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 To produce the essential secondary metabolites, plants are the major and important target 

source materials for conducting the high-profile metabolic engineering studies. Metabolic 

pathway engineering of both microorganism targets and plants target contribute towards 

important drug discovery. In order to efficiently work out in advanced plant metabolic path-

way engineering techniques, a detailed knowledge and expertise is essentially needed regard-

ing the plant cell physiology and the mechanics of plant metabolism. Mathematical and statis-

tical models to scale and map the genome for integrative metabolic pathway activity, signal  

transduction mechanism in the genome, gene regulation and the networks of protein-protein 

interaction can provide the in-depth knowledge to work efficiently on plant metabolic  

pathway engineering studies. Incorporation of omics data into these statistical and mathemat-

ical models is crucial in the case of drug discovery using the plant system. Recently, artificial  

intelligence concept and approaches are experimentally applied for efficient and accurate  

metabolic engineering in plants.  
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INTRODUCTION 

 

The science of metabolic engineering is defined as the redirec-

tion of one or more enzymatic reaction processes to produce 

new compounds in an organism, improve the rate of production 

of existing chemical compounds or mediate the compound  

degradation. The plant metabolic engineering is quite a young 

science to investigate the metabolic pathways in plants.  

Attempts to use this knowledge to engineer metabolic process-

es in plants, it requires the basic molecular biological and  

biotechnological tools and expertise techniques such as gene 

cloning, promoter analysis in the gene construct, protein target-

ing protocols, plant transformation principles and other areas of 

plant biochemical genetics. To procure the desired cell  

phenotypes, metabolic engineering has improved a lot by  

redirecting appropriate metabolic signalling fluxes with the help 

of metabolic flux analysis protocols (Stephanopoulos et al., 

1993; Bailey et al., 2002).  

In the era of post-genomics, a huge volume of metabolites data, 

protein interactions data and gene analysis data, introduces 

more accurate analytical techniques to explore and understand 

cellular metabolism which reduces the costs of oligonucleotide 

synthesis exponentially. In recent years, the plant metabolic 

engineering has emerged with various novel analytical  

approaches, such as, gene deletion, heterologous genes expres-

sion in plant system and identification of tools to control gene 

expression in plants or plant cell regulation (Blazeck et al., 2010; 

Tyo et al., 2007). Application of metabolic engineering systems 

to microbial strain such as Escherichia coli and Saccharomyces 

cerevisiae, enables metabolic engineers to overproduce the  

essential secondary metabolites for both industrial and pharma-

ceutical use (Kim et al., 2016). Although different kinetic models 

of the parts of such pathways have been developed, the study 

on signalling, gene regulation and protein-protein interaction 

networks are still in nascent stage. Such genome-scale models 

will enable metabolic engineers to analyse the complex  
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pathways which are integrated with each other, generally  

leading to rational design of new vision to the traditional meta-

bolic pathway analysis (Abernathy et al., 2017). However, lack of 

detailed knowledge to demonstrate pathway models is a major 

limitation factor in plant metabolic pathway engineering 

(Krambeck et al., 2005; Umaña et al., 1997). Thus, metabolic  

engineers need both in silico models for prediction, screening 

directed evaluation and experimental analysis for suggesting 

novel hypotheses and confirming in silico predictions in plant 

system (Boyle et al., 2012) using the recent metabolic engineer-

ing tools.  

 

Requirements for metabolic engineering strategies  

development 

Metabolic engineering is an emerging biological science tool 

which is having immense contributions towards agriculture, 

medical science and basic science. Plant metabolic engineering 

has been emerged as an advanced technology for future biologi-

cal archives, which provides strategies to utilize renewable  

natural resources to generate alternative biofuels (Schuhmann 

et al., 2012). Genome-scale models of integrated metabolic  

techniques, signal transduction mechanisms, protein-protein 

interaction, regulatory genetic networks and advanced tools for 

gene editing have pushed plant metabolic engineering a few 

steps ahead. However, such tools essentially need detailed  

investigation about cellular properties at molecular level,  

cellular pathway regulations dynamics, enzyme kinetics, gene-

protein interaction and relationships among each other’s. Com-

putational analysis based on multiple omics data with the use of 

recent advances in artificial intelligence science in plants, can 

also facilitate such efficient and optimal metabolic engineering 

strategies in plant system. In case of crop plants, enhancement 

of nitrogen supply, nutrient uptake, biofuel production, photo-

synthesis proficiency and disease prevention can be achieved 

through advanced metabolic engineering strategies. Such strat-

egies and advanced methods of metabolic engineering on  

microorganism as well as plants lead to successful drug design 

for various complex diseases frequently affecting the plant  

system. In this context of experiment, the NET analysis 

(Network-embedded thermodynamic analysis) and TMFA

(Thermodynamics-based metabolic flux analysis) have been 

widely used (Kümmel et al., 2006; Zamboni et al., 2008; Olson  

et al., 2015). Finally, the consistent integrated pathway model 

qualifies for computational and statistical analysis which leads 

to metabolic control analysis (MCA) in plants with the support 

of the science of artificial intelligence.  

 

Metabolic pathway engineering in plant 

Plant metabolic engineering advances in various aspects rapidly 

over last few decades. Golden rice (Ye et al., 2000; Tang et al., 

2009) is a significant example of metabolic engineering in plants. 

Here, metabolic engineers face great challenges including self 

sufficient plant creation in case of nitrogen requirement,  

enhancement of the nutrient in crop plants, biofuel production 

from plants, photosynthetic efficiency improvement and plant 

disease control. Nitrogen fertilizers damage the soil, environ-

ment and nearby water resources during the application to crop 

plants for the yield advancements, when the crop is on field. 

Thus, it will be a great advantage, if a plant can manage its own 

nitrogen requirement by itself without depending on chemical 

fertilizers. Nitrogenase, an enzyme, generally found in some 

bacteria, converts atmospheric nitrogen into biologically availa-

ble form ammonia. Plants are able to produce and manage the 

required nitrogen, if the genes of nitrogenase enzymes are  

expressed in plant host system. However, metabolic engineers 

are able to express only eight genes for nitrogenase in plat host 

till date (Kebeish et al., 2007), which is a big future challenge for 

the researchers for further investigation.  

It is also essential to determine the tissue location and cell type, 

where the gene constructs for nitrogenase needs to be  

expressed (Dasgupta et al., 2020). Metabolic engineering strate-

gies contribute an exponential role in enhancing the nutrient 

contents in crop plant species. The targets for this context are 

the metabolic pathways, producing phytoalexins and flavonoids, 

which are helpful mostly in the chemo-preventive mechanism of 

horticultural crop plants. An innovative plant breeding technolo-

gy is recently reported, which fortified the crop broccoli with 

enhanced content of the glucosinolate glucoraphanin (Armah  

et al., 2013), consumption of which reduces the risk of cancer in 

human beings. It was also observed that, the flavonoid anthocy-

anin has been enhanced three-fold by expressing two 

transgenes from snapdragon in tomato plant (Butelli et al., 

2008), which is a good sign for future research. 

Some investigations show that, how iodine content in  

Arabidopsis thaliana can be enhanced by expressing NIS  

sodium-symporter gene of human thyroid gland and knocking 

out HOL-1 gene. Apart from golden rice, the nutrient content in 

maize and wheat can also be enhanced using the metabolic  

engineering (Morris et al., 2006). Recent finding of metabolic 

engineering shows that DHA (Docosapentaenoic acid) can be 

produced from Camelina sativa by introducing a transgenic 

D6-desaturase gene from yeast (Dasgupta et al., 2020). In this 

scenario, new genome editing tools like ZFNs (zinc finger nucle-

ases), TALENs (transcription activator-like effector nucleases 

and CRISPR-Cas9 (clustered regularly interspaced short palin-

dromic repeats-CRISPR-associated gene 9), play predominant 

role in plant genome metabolic pathway engineering (Shan et al., 

2013; Li et al., 2015).  

Rapid increase in world population and urbanization gives rise 

to the importance of improving the photosynthetic efficiency of 

plant. The C4 and CAM (Crassulacean acid metabolism) photo-

synthetic system are available to develop more efficient and  

sophisticated genome editing or transformation methods for 

improving the photosynthetic efficiency of plant (Dasgupta et al., 

2020). Metabolic engineering of biosynthetic pathways contrib-

utes to generate plant chemical defence compounds with  

antimicrobial properties, generally useful in crop protection 

studies (Collinge et al., 2016). Commercially grown transgenic 

crops, such as maize, cotton and soybean are more tolerant to 

herbicides, such as glyphosate, and resistant to insect pests. 
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They can successfully be produced by transferring a single gene 

(for example, endotoxin encoding genes from Bacillus  

thuringiensis).  

Multiple gene transfer technique is still under microscopic  

investigation and analysis. The most extensive metabolic  

engineering strategy for plant disease control is to introduce  

resveratrol synthase, and stilbene synthase genes (Delaunois et al., 

2009). Here, different kinds of enzymes, involved in the biosyn-

thesis of a specific defence compound can be encoded from the 

non-homologous genes, contained in the gene cluster. In this 

context, ten candidate genes are identified by a biosynthetic 

gene cluster for the anti-tumour alkaloid noscapine found in 

Papaver somniferum (Winzer et al., 2012). Besides all these, gene 

silencing may arise due to expression of multiple genes of a path

-way simultaneously. These studies may help to investigate the  

complex metabolic pathways in crop plants in future. 

 

Role of artificial intelligence in plant metabolic pathway  

engineering 

In order to predict appropriate and significant target genes for 

plant metabolic pathway dynamics, the role of machine learning 

techniques is essentially need. Efficient and optimal system  

metabolic engineering now a days is driven by high throughput 

transcriptomics, proteomics and metabolomics data mining and 

analysis (Kim et al., 2020; Dasgupta et al., 2020). Consequently, 

modern machine learning algorithms including deep learning 

approaches can facilitate metabolic engineers to analyse these 

bio big data, helps in predicting the efficient pathways for meta-

bolic engineering. A deep learning-based technique DeepRibo, 

based on convolutional neural networks and recurrent neural 

network, is invented for gene annotation in prokaryotes  

efficiently, without any help of gene homology analysis 

(Clauwaert et al., 2019). DeepEc (Ryu et al., 2019) is another  

convolutional neural networks-based method with homology 

analysis for predicting enzyme using protein sequences as  

inputs.  

In the field of metabolic pathway reconstruction, a machine 

learning based method 3N-MCTS (Segler et al., 2018) has been 

developed, which is a retro synthesis method based on integra-

tion of three distinct artificial neural networks. The goal of this 

technique is to explore efficient synthetic routes to produce a 

target molecule from a host plant species. In addition, convolu-

tional neural networks combined with linear regression models 

(Groher et al., 2018; Carbonell et al., 2018) can be used to help in 

optimizing plasmid copy number and selecting promoter region 

which can be helpful in plant transformation experiments.  

Recently, an advanced deep learning-based method DeepCRISPR 

(Chuai et al., 2018) is capable of predicting on-target to be 

knocked out and off-target sites of single-guide RNAs efficiently. 

Even now a days automated processes using robots (Boles et al., 

2017; Chao et al., 2017) in plant systems metabolic engineering 

are much more needed. However, in order to utilize machine 

learning techniques and artificial intelligence efficiently, careful 

planning is required to generate high quality datasets with 

standard data format, data type and content (Zampieri et al., 

2019). In addition, the predictions from machine learning tech-

niques should be appropriately validated through appropriate 

experimental mechanistic models to get into the insights of  

biological metabolic processes deeply, for proper investigation 

(Dasgupta et al., 2020). 

 

Conclusion 

 

Plant metabolic engineering enables pharmaceutical scientists 

in developing preventive medicines or strategies to combat 

chronic human diseases by utilizing higher number of phytonu-

trients in fruit and vegetables. For these purposes, metabolic 

engineers have focused on up or down regulation of required 

genes to redistribute steady state fluxes of specific metabolic 

pathways. Recently, dynamic regulation strategies can  

rebalance metabolic fluxes depending on the alteration of cell 

phenotypes. Moreover, CRISPR-Cas9, ZFNs and TALENs genome 

editing tools has revolutionized genome editing strategy in crop 

plants. In addition, exploration of interactions among different 

metabolic, gene regulatory, signal transduction and protein-

protein interaction networks, drive engineers to employ more 

sophisticated and advanced technology for improved metabolic 

engineering in near future. However, plant metabolic engineers 

need more effective computational models, with the support of 

artificial intelligence, integrating metabolic, signalling, gene reg-

ulatory and protein-protein interaction networks, mainly in 

eukaryotic cells, together detailed system knowledge including 

proper regulatory guidelines. 
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