
  

 

Archives of Agriculture and Environmental Science 6(3): 397-407 (2021) 

https://doi.org/10.26832/24566632.2021.0603021 

This content is available online at AESA  

Archives of Agriculture and Environmental Science  

Journal homepage: journals.aesacademy.org/index.php/aaes  
 

e-ISSN: 2456-6632 

ARTICLE HISTORY  ABSTRACT 

Received: 06 July 2021  

Revised received: 14 September 2021  

Accepted: 22 September 2021  

 Scalability known as the capacity of input variables along the Value Chain (VC) to effect  

transformative changes on agricultural production was evaluated for a farming system in Juba 

County of Central Equatoria State (CES), South Sudan. These transformative input variables 

commonly referred to as, Disruptive Agricultural Technologies (DATs) in the form of advisory, 

material as well as technological variables were shown to positively influence agricultural  

production from a default state. The objective of this study was to find out how a probability-

based Bayesian Belief Network (BBN) software NETICA could be applied to assess as well as 

upscale the level of agricultural production P(Prodlevel |    ) from a data input domain D. Simula-

tion using a 700 kg ha-1 of cowpea yield at 50% Cumulative Probability Distribution (CPD) as a 

calibrant, the backcasting method showed that, scaling up of marginal probabilities in  

agrotechnology and financial resources from 0.025 to 0.1 (25% increment) and from 0.015 to 

0.03 (50% increment) respectively, while keeping other input variables unchanged, increased 

cowpea yield from 692.9 to 783.1 kg ha-1 (about 12% increment).  Conversely, where no DATs 

were introduced as in the worst-case scenario, production level was comparatively lower. The 

BBN model is thus, an indispensable tool that can provide useful information on scaling up 

agricultural production and hence improve livelihood opportunities in Juba County. However, 

for sustainable agricultural production, scalability may be constrained by spatial-temporal, 

environmental and socio-economic imperatives as well as on availability, accessibility, afforda-

bility of all input variables. 
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INTRODUCTION 

 

According to the Integrated Food Security Classification Phase, 

IPC 2020 Report (IPC 2020 Report 2 to 4), food insecurity with  

regional variabilities and extremities in S. Sudan has continued 

to worsen affecting more than 51% of the entire population, 

especially ever since the start of the self-inflicted war in 2013 

between the government and the opposition forces. Compound-

ed with climatic shocks (erratic rainfall and subsequent floods of 

2019 and 2020), economic woes due to drop in GDP, skyrocket-

ing food prices, hyperinflation, locust invasion in early February 

2020, over 6 million people are facing acute food insecurity and 

are unable to feed themselves. Consequently, the number of 

meals per family per day has reduced from about three to one 

with significant food quality reduction (Lomeling, 2015).  

Although natural and man-induced factors have significantly 
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impacted on food insecurity, the lack of coherent infrastructure 

along the food Value Chain (VC) coupled with the absence of 

any functional Disruptive Agricultural Technologies (DATs), has 

further exacerbated the already dire situation. Under DATs, are 

all digital and non-digital innovations that enable smallholder 

farmers overcome their current production constraints and 

increase their yields, generate more income, improve nutritional 

status and increase resilience to the effects of climate change.  

However, any sustainable food security program in S. Sudan and 

in Juba County specifically is premised by the development of 

clear value chain infrastructure upon which actionable DATs can 

be implemented. According to the Food Security and Agricultural 

Development (FSAD) program of the (Gesellschaft für Internatio-

nale Zusammenarbeit GmbH (GIZ), assessing scalability of DATs 

would have been likely within the Green Belt of Greater Equato-

ria, which since 2010 had already some established food value 

chains among smallholder farmer groups of Morobo, Magwi and 

Nzara counties. Countrywide however, there are practically no 

farmer organizations. Scalability, within the S. Sudanese  

context, would be perceived as the quantitative change in size of 

an input variable as part of an overall agricultural production 

system. It requires a differentiated approach both horizontally, 

in terms of widespread extension and vertically, in terms of  

intensification of individual components or inputs along the 

food value chain (Pachico and Fujisaka, 2004). Thus, scalability 

of input variables even within the production stage would  

require a differentiated focus on those easily accessible and 

available inputs, e.g. ox-plough, traditional shared cultivation 

practice (mòlë in Bari language), application of organic fertilizers 

(cow dung from abundant livestock) than for example, industrially 

manufactured inorganic fertilizers, pesticides or delivery of for-

eign made farm machinery. On the other hand, scalability within 

the processing stage would focus more on increased sorting, 

drying and handling of local agricultural farm produce to gener-

ate some value addition (Matthew, 2018). 

Matching empirical data obtained from the smallholder farmer 

groups of the three counties of Morobo, Magwi and Nzara which 

all had with more, or less developed agricultural production 

value chain, one could easily highlight the challenges and short-

comings of any DATs applications and scalability countrywide.  

 

Challenges in the application of DATs in the S. Sudanese context 

can broadly be divided into three major categories along the 

agricultural value chain (Table 1). 

a) Production  

b) Processing 

c) Sales and Marketing 

 

Production constraints 

As aforementioned, some major constraints limiting scalability 

of DATs at the production or farm-level are the lack of, or incon-

sistency in sustaining production inputs and processes. S.  

Sudan´s has abundant virgin and fertile lands with subsistence 

agriculture only covering about 5% of its entire area. However, 

the lack of systematic soil analysis and research, has constrained 

the qualification and establishment of fertility parameters and 

hence efficient and effective fertilizer application for especially 

nitrogen-poor soils. With subsidized prices for nitrogen fertiliz-

ers, e.g. urea for most countries of Sub Saharan Africa ranging 

between $0.7-1.6/kg (Bonilla et al., 2020), this is unaffordable 

even for oil-producing S. Sudan whose GDP has continued to 

decline from about $1,111 in 2014 to less than $200 in 2017 and 

with about 82% of the population considered poor based on the 

$1.90 2011 purchasing power parity (PPP) poverty line (World 

Bank, 2021). With hardly any seed sector infrastructure and re-

search, provision of certified and biofortified seeds to smallhold-

er farmers in S. Sudan remains a big challenge. Most farmers have 

had to purchase uncertified seeds through informal channels or 

unauthorized commercial agents from Uganda or Kenya, thereby 

compromising the output or yield per acreage. S. Sudan has only 

about 390 km of paved roads with the almost 17,000 km road 

network comprising of dirt unpaved roads that are mostly im-

passable during the rainy season, thus making any farm-market 

linkages and access impossible. Poor outreach program and in-

frastructure has only further exacerbated the already deficient 

extension work and advisory services especially to the rural 

smallholder farmers, who are entirely dependent on sur place 

technical knowledge than on digital platforms.  

 

Processing constraints 

Agriculture is inherently a risky and uncertain undertaking. 

Thus, assessing the anticipated economic returns in monetary 

terms is directly a function of interactions of all production fac-

tors and processes along the food value chain.  Scalability, there-

fore, is built on the premise that some input variables or produc-

tion factors have specific threshold values, upon which this can 

be expounded or increased. Within the S. Sudanese context, 

having all production variables at the needed times and amounts 

is often difficult or challenging thus, any quantitative predictions 

on the net economic returns and attainment of some degree of 

food security becomes a speculative and probabilistic exercise. 

In this case, the use of Probabilistic Relational Models (PRM) of 

the Bayesian Belief Networks (BBN) becomes an indispensable 

option. The BBN model attempts to assess the “uncertain”  

impacts of any one of these variables jointly, or otherwise, and 

to express these in the form of probabilities. Further, the  

impacts of these variables on the dependent variables can then 

be described as having a causal relationship and so expressed in 

terms of conditional probability through a Directed Acyclic 

Graph (DAG). In the model, all input and resources at production 

stage may be assumed as independent variables and therefore, 

(parents), while those at the processing stage as dependent 

(children).  The Bayesian model  has been used in supply chain 

risk assessment (Sharma and Sharma, 2015); analysis and  

prediction of ecological water quality (Forioa et al., 2015); on 

nutrient regulating ecosystem services (Bicking et al., 2019); 

reliability control of fresh food e-commerce logistics systems 

(Zhang et al., 2020); grower´s adaptive pre-harvest burning  

decisions (Price et al., 2018) on green supply chain performance 

prediction (Rabbi et al., 2020).  
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Sales and marketing constraints 

Agricultural production in S. Sudan is still very subsistence with 

yields as low as 0.97 tons/ha for cereals and about 1.2 tons/ha 

for cowpeas (Lomeling and Huria, 2020) obtained from relative-

ly small farms 0.4-1.5 ha in size. Lack of entrepreneurial mentali-

ty, poor market access and marketing information system, lack 

of microfinancing institutions and infrastructure are only a few 

of the sales and marketing constraints limiting intensive agricul-

tural production in S. Sudan. This paper shall focus more on  

production constraints while leaving out the processing and 

sales and marketing constraints for yet another review paper. 

The objective of this review paper was to identify major con-

straints and possibilities in scalability along the value chain on 

agricultural production in S. Sudan using Bayesian Belief Network 

model as well as find out the most appropriate and significant 

DATs and interventions for a sustainable agricultural production.  

 

APPROACH AND METHODOLOGY 

 

The basic idea of the BBN model in simulating agricultural  

production, is to maximize the probability   

 

of a network structure given the database       made 

up of independent input variables {human, financial, water  

resources, agrotechnology and fertile lands}. This involves learning 

Table 1. Schematic Representation of Disruptions the Value Chain Approach for smallholder farmers in Juba County of Central 
Equatoria State (CES) of South Sudan.  

Food Value Chain Inputs, Resources and Production Processing Sales and Marketing 

i. Human: professional and skilled labor 
ii. Financial: grants, loans, credits from  

public and private financial institutions 
iii. Fertility level: available fertile lands 
iv. Water resources: adequate and available 

rain or surface water 
v. Agro-Technology: farm equipment, fertiliz-

er, insecticides, herbicides, hybrid and  
biofortified seeds etc. 

  

i. Timely harvest and 
reduction in harvest 
losses 

ii. Efficient handling 
(drying, cooling,  
storage) and packaging 

  

i. Timely produce delivery 
from production sites to 
markets 

ii. Direct produce retailing 
and wholesaling 

iii. Agents and distributors  

Challenges 
where DAT  
interventions are 
applicable 

i. Poor ICT, (Data Analytics, IoT) and net-
work coverage 

ii. Poor incentivization, financial inclusion of 
smallholder farmers and general lack of  
investment in agriculture 

iii. Lack of certified and biofortified seeds 
iv. Lack of research, soil, water, seed testing  

laboratories 
v. Lack of qualified and skilled labor (tractor 

operators and mechanical servicing work-
shops) 

vi. Poor extension and advisory services as 
well as access to farm equipment and in-
puts 

vii. Increased violence, displacement and  
rural-urban migration 

viii. Unpredictable rainfall patterns and inabil-
ity to access and exploit available water  
resources 

ix. Lack of business mindset for commercially 
driven farming 

x. Lack or poor storage  
facilities 

xi. Poor or lack of ade-
quate post handling 
technologies 

xii. Lack of constant ener-
gy supply for cooling 
and preservation of 
fresh produce 

xiii. Lack of small-scale 
processing industries 

xiv. Poor network  
coverage 

xv. Lack of customized  
e-Commerce mobile 
Apps 

xvi. Poor roads to markets 
xvii. Lack of agricultural 

stock exchange  
markets 

xviii.Lack of value addition 
to produce 

xix. Poor knowledge of  
price-demand  
dynamics  

Step 1 

Identification of independent in-

put variables  

Step 2 

Assessing score-based perfor-

mance and probability indicators 

 

Step 3 

Assessing dependency of agricul-

tural production on input variables 

Step 4 

Inferences from algorithm on 

learned network structure 

 

Backcasting 

Step 5 

Adjustments and scalability of  

disruptive interventions 

Figure 1. Steps towards modelling probabilities from independent input 
variables. 
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Figure 2.  A simplified graphical abstract illustrating the joint probabilities of discrete random variables 
on agricultural production level using the Belief Bayesian Network (BBN). 

Figure 3. Default case typical of much of S. Sudan´s contributions of input variables for food production. 

Figure 4. Worst case scenario with low values of all independent DAT input variables. 

Figure 5. Idealized best case scenario with optimal adjusted DAT input variables. 
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the network structure of all possible conditional probability 

distributions from the several combinations of the different 

input variables and assigning the highest metric scores to the 

network structure that fits the data well (Cooper and  

Herskovitz, 1992; Heckerman et al., 1995).  Therefore, the  

conditional probability of some threshold value of agricultural 

production    in some given domain can be  

perceived as the product of joint probabilities of all parent input 

variables. The number of joint probabilities will depend on the 

number of input variables (n) and their respective classifiers for 

each given variable. Using the Conditional Probability Tables 

(CPT), several probabilities can be obtained. The algorithm in 

the NETICA software package then learns the data structure 

and makes the best choice of conditional probabilities from the 

different probability combinations of the input variables. As in 

this study, there were n=5 variables with c=19 (classifiers). Two 

steps consisting of i) forecasting: in which probabilities of agricul-

tural production are assessed from a priori known input varia-

bles ii) backcasting: in which, desired or output probabilities of 

agricultural production are set a priori and the probabilities for 

the input variables backwardly assessed. 

Such a BBN simply offers a set of fore- and backcast approxima-

tion probabilities of anticipated output, or input values. The here-

in applied software NETICA (Norsys Software Corp.) is a robust 

software that enables the application of backcasting method 

(Kanter et al., 2016; Robinson et al., 2011; Kok et al., 2011; Mulder 

and Biesiot, 1998; Anderson, 2001). Backcasting, in contrast to 

forecasting, is a method that sets a priori specific targets at some 

future date based on the current input of one or more independ-

ent variables (David et al., 2016). The desired and set target trig-

gers an automated and backward adjustment on the input varia-

bles that is built in the software´s algorithm. Thus, any changes on 

the target values, there is a corresponding backward change in 

the input variables. This is very much a scalability identifying  

approach, as it enables users to upscale or downscale and rank 

individual variables, in order to reach a desired outcome. 

 

FRAMEWORK DEVELOPMENT 

The proposed research consists of five steps as described below 

in the proposed framework (Figure 1).  

 

Step 1: Identification of independent input variables  

Identification and enlisting of all major input (discrete random) 

variables and their respective probabilities that may impact 

agricultural production. These could be primary variables (fertile 

soils, available water, skilled labor, etc.) or secondary variables 

(applied technology-equipment, fertilizers, insecticides, financial 

access, etc.) in the domain       . 

 

Step 2: Assessing performance and probability indicators 

The presence and significance of each input variable and proba-

bility is assessed. Performance indicators based on score-based 

approach are assigned probability values, {           , 

where    is any value between 0 and 1.0} or expressed as  

percentages (%) prior to adjustment. The algorithm is based on a 

scoring function that searches the goodness of fit and highest 

scores of each explored structure from the several probable 

combinations of joint probabilities of the input variables 

(Scanagatta et al., 2018, Scanagatta et al., 2019). Equally expert 

experience and good judgment on the nature and state of  

agricultural production systems in S. Sudan would give more 

realistic values. These then, can be used for computing the  

probability of each performance indicator in the BBN model. 

 

Step 3: Assessing dependency of agricultural production on 

input variables 

The influence and effects of the input variables and their perfor-

mance on production level in the BBN model are assessed.  

 

 

Here, several joint probability combinations of two or more 

discrete random variables (parent nodes) are generated in a Con-

ditional Probability Table (CPT) and the best score of condition-

al probability to agricultural production (child node) assessed. 

 

Step 4: Inferences from learned algorithm  

From the learning algorithm of the NETICA software, inferences 

on the network structure can be made during each adjustments 

of input variables as in step 3. The inferences are made on which 

conditional probabilities of the input variables give the best 

performance indicator as shown by level of production.  

 

Step 5: Backcasting and scalability of disruptive interventions 

Desired performance measure of production level can be back-

casted by adjustments or scaling up at the production node 

which simultaneously triggers change in the input variables.  

Different scenarios: worst, moderate and best-case scenarios 

can independently be modelled, and the different conditional 

probabilities assessed. In order to assess the effect of scalability 

on food production level, two scenarios were chosen: a) worst 

case scenario: in which all input variables were either none-

existent or very low. This represented the default and typical 

state and nature of agricultural production system in S. Sudan 

whereas b) best case scenario: in which all input variables were 

disrupted or adjusted to medium or high levels, representing an 

idealized and desired state. 

 

The BBN is made of two parts P = (", J). The first part, “"”, is a 

directed acyclic graph (DAG) which shows the production node 

represented by the independent variables or parent nodes 

{        …..          }. The arcs are shown as the causal relationships with 

the processing and subsequently with the sales and marketing 

nodes. The second part of BBN is the conditional dependency 

distribution of J where,    = PÂ(xi |pxi), is the set of 

direct parent variables of xi in ". Using the joint probability  

distribution, the network Â can be represented by: 

 

 

 

                   (1)
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The formula indicates that the conditional probability of an 

event in Λ is observed in terms of the interactions and 

magnitudes of the random variables {       .…         }. The proposition 

statement posed a priori would be, that a threshold probability 

level of Λ is attainable based on given levels of all, each or some 

 {          .…          } where human resources;                   financial 

resources;  fertile lands/soils;  agrotechnology 

 water resources.  

For five random input variables (n=5) at the production stage, 

the product of conditional probabilities generated from the 

chain rule produces: 

Therefore, any disruption on DATS and subsequent scalability is 

made easier. In other words, the BBN is composed of a set of 

interconnected nodes. Each node represents one variable within 

the model. For each variable/node, there are different possible 

states. The causal relationship between the variables is depicted 

in the form of arcs. The probability of the individual states of the 

nodes is determined from the probability of each possible state 

of all connected nodes and their causal relationship 

 

BBN Structure on cause-effect relationships 

The level of agricultural production is a function of interplay of 

several production factors and processes. In this study, five  

major input variables have been considered and the resultant 

impact expressed in terms of production level (Figure 2). 

The basic BBN idea used here (Figure 3) consisted of five parent 

nodes (input variables) and arcs (linkages) built on the concept of 

adjusting either one, more or all jointly to prompt a desired level 

of production. At the second level, the production node (child) is 

then adjusted to effect changes at the processing node which in 

turn may be adjusted to effect changes on the sales and market-

ing node. The processing node as in much of S. Sudan consisted 

of post-harvest, handling and perhaps drying of predominantly 

cereal (sorghum, millet, maize); leguminous (cowpeas, beans);  

tubers (cassava, yams, sweet potatoes); oil crops (sesame, peanuts). 

The relationship between the independent input variables and 

levels of production under a default state of a typical agricultural 

setting in S. Sudan. Over 75% of financial (loans, credits etc.) and 

technical resources (modern farm equipment, digitized/precision/

smart farming technology, hybrid seeds etc.) inputs are low or out-

right non-existent, whereas human resources (traditional farm-

ers with less or no education and skills on modern farming) and 

have a direct influence on the production level. Although S. Su-

dan is endowed with several seasonal rivers, wet plains especial-

ly the Sudd area, accessing water through irrigation for agricul-

ture is practically non-existent. 

Figure 4 shows the worst-case scenario and the effect of the 

input variables on production level. Comparing the production 

levels under default case (Figure 2) with that under worst-case, 

shows no significant differences, indicating the actual deplora-

ble state of agricultural production in S. Sudan. Diao et al. (2012) 

showed that the average cereal yield level in S. Sudan was at 0.9 

ton/ha, while this was at 3 and 2 tons/ha for Ethiopia and Kenya 

respectively, indicating a 30-50% lower production level.  

Obtaining an average value from the medium and high produc-

tion levels showed a closer and corroborating value of about 45-

47% below those of both countries. Disruption in the input  

variables had marked changes on agricultural production level. 

Although as an ideal and hypothetical scenario, the simulated 

medium production level increased from about 60% (worst case) 

to about 77% (best case) as in Figure 5 showing a 17% change.  

The degree of disruption of individual input variables may also 

vary in time and space. Changes in disruption of e.g. increased 

technical resources in form of applied hybrid seeds, good agri-

cultural practices (smart and precision farming), extension and 

advisory services (about 91%); or of financial resources, e.g. 

access to soft loans and credit (about 74%) may be realized in 

the short term. Equally, disruption in facilitating human re-

sources, e.g. in developing skilled labor force (about 60%), or of 

increasing soil fertility level (about 86%) may take a relatively 

longer time. Although S. Sudan has vast fertile agricultural lands, 

less than 4% of arable land is being used (Olympio et al., 2014). 

Disruptions through innovative agrotechnology would signifi-

cantly boost production in S. Sudan similar, to that experienced 

within the East African region (Krishnan et al., 2020). Equally, 

agricultural underfunding by the government showed that the 

sectoral allocation (percent share) in the annual budget for the 

2012/13 to 2014/15 FY (Attipoe et al., 2013) did not exceed 

more than 3% of the GDP, significantly impacting on overall 

agricultural production. 

Although no empirical studies on the impacts of digitization as a 

transforming force in agricultural production in S. Sudan have 

been conducted, it is known to significantly impact on agricul-

tural productive processes elsewhere (Poppe et al., 2013; Smith, 

2018; Rotz et al., 2019; Jouanjean, 2019; Trendov et al., 2019). 

Agricultural transformation in S. Sudan through digitization may 

be in the form of increased internet connectivity and related 

digital services, where local farmers can easily access daily mar-

ket prices, weather forecasts and seek online advisory services. 

According to (https://datareportal.com/reports/digital-2020-

south-sudan), the number of mobile connections in South  

Sudan increased by three hundred thousand subscribers (ca. 

+16%) between January 2019 and January 2020, this about 

20% of the total population (Olympio et al., 2014). These  

mobile connections and services may be in the form of  

increased e-commerce, money transfers through the  

m-Gurush platform of the Zain Network as well as receiving 

actual market, soil and weather data for distant rural farmers. 

Similarly, much of S. Sudan´s rain-fed agriculture could be 

boosted by harnessing the vast water resources of the Nile 

through increased irrigation, construction of water pans and 

dykes especially in Upper Nile and Jonglei states (Clesensio 

and George, 2011). 

https://datareportal.com/reports/digital-2020-south-sudan
https://datareportal.com/reports/digital-2020-south-sudan
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Table 2. Estimated level of agricultural production of cowpeas (kg/ha) from marginal probabilities of different input variables  
under worst case scenario. (calibrated with 50% CPD production level of 700 kg/ha; Lomeling and Huria, 2020). 

Discrete random 
variables 

State/condition 
Kg ha-1   Sum         ) 

Absent/None Low/Poor Medium High 

Human Resources 1)   0.6270(0.2884) 0.0884(0.0407) 0.2850(0.1311) (0.4602) 322.14 

Financial Resources 2) 0.6270(0.0094) 0.0821(0.0012) 0.1450(0.0022) 0.1460(0.0022) (0.0150) 10.49 

Fertile Soils 3)   0.8990(0.2697) 0.0628(0.0188) 0.0374(0.0112) (0.6437) 202.74 

Agro-Technology 4) 0.7000(0.0175) 0.0602(0.0015) 0.1850(0.0046) 0.0541(0.0014) (0.1087) 17.50 

Water Resources 5) 0.7630(0.1526) 0.0044(0.0009) 0.1410(0.0282) 0.0917(0.0183) (0.2000) 140.03 

Sum          ) (0.1795) (0.5021) (0.0945) (0.1642)   692.9 

Kg ha-1 125.65 351.47 66.15 114.94     

I. Marginal probabilities of each discrete random variable for minimal level of agricultural production: 1) 0.46; 2) 0.015; 3) 0.3; 4).0.025; 5)0.2. 
II. Within brackets = calculated conditional probability dependent on marginal probability of input variable and classifier or state/condition 

(absent/none; low/poor; medium and high). 
III. Outside brackets = probability level or state of input variable without any agricultural production. 

Table 3. Estimated level of agricultural production of cowpeas (kg/ha) from marginal probabilities of different input variables  
under best case scenario. (calibrated with a 50% CPD production level of 700 kg/ha; Lomeling and Huria, 2020). 

Discrete random 
variables 

State/condition   
Kg ha-1 

  Sum         ) 
Absent/None Low/Poor Medium High 

Human Resources 1)   0.090(0.0414) 0.0310(0.0143) 0.8790(0.4043) (0.4600) 322.03 

*Financial Resources 2) 0.0894 (0.0027) 0.0182(0.0005) 0.0169(0.0005) 0.8760(0.0263) (0.0299) 20.99 

Fertile Soils 3)   0.0899(0.0269) 0.0124(0.0037) 0.8980(0.2694) (0.3000) 210.00 

*Agro-Technology 4) 0.0320(0.0032) 0.0049(0.0005) 0.01392(0.0039) 0.9492(0.0949) (0.1025) 71.76 

Water Resources 5) 0.0327(0.0065) 0.1280(0.0256) 0.8070(0.1614) 0.0324(0.0065) (0.2262) 158.33 

Sum            ) 0.0124 0.0949 0.1838 0.8014   783.14 

Kg ha-1 8.68 66.43 128.66 560.98     

I. Marginal probabilities of discrete random variable for minimal level of agricultural production: 1) 0.46; 2) 0.03*; 3)0.3; 4) 0.1*; 5)0.2. 
II. Within the brackets = calculated conditional probability dependent on marginal probability of discrete random variable and classifier or state/

condition (absent/none; low/poor; medium and high). 
III. Outside the brackets = probability level of discrete random variable without any agricultural production  

Table 4. Scalability of some input variables on production levels of a typical agricultural system in Juba County of Central 

Equatoria State (CES), South Sudan. 

  
 Input variable or resource 

Level of input 
(Worst case  
scenario) in % 

Level of input 
(Best case  
scenario) in % 

Level of scaling and 
change D (up/down) 
in % 

   
Impact Classification 

  

 Financial Low 15.8 

16.3 

26.8 

11.1 

38.5 

19.5 

4.7    

22.2  

7.3     

Slight ** 

Major *** 

Slight ** 

Medium 

High 

 Soil fertility status Low 52.2 

33.0 

8.66 

15.7 

59.0 

14.7 

36.5   

26.0   

6.04   

Major *** 

Major *** 

Slight ** 

Medium 

High 

 Technology Low 5.52 

28.9 

26.1 

3.56 

64.1 

17.6 

1.96   

35.2   

8.5   

Slight ** 

Major *** 

None * 

Medium 

High 

 Water Low 4.92 

43.6 

25.4 

5.58 

51.7 

31.7 

0.66  

8.1  

6.3  

Slight ** 

Slight ** 

Slight ** 

Medium 

High 

 Human Low 11.8 

66.6 

21.6 

10.9 

68.2 

21.0 

0.9    

1.6    

0.6    

Slight ** 

Slight ** 

None * 

Medium 

High 

(Impact classification: *= None; **= Slight; ***=Major). 
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Figure 6(a) and (b) show the backcasting step in which changes in 

input variables are influenced by adjustments in the average 

production level. Two different probability levels of production 

were chosen to illustrate this point. The first case (Figure 6a) 

involved a desired level at medium production of 59% (while high 

at 18.3%) and the second case (Figure 6b) where medium  

production of 33% (while high at 53.6%). In Figure 6 (a) the com-

bined medium to high production level was at 77.3%, while this 

was at 86.6% in (b) indicating a 9.3% difference. The lack of  

financial and technical resources coupled with a relatively high 

percentage of low soil fertility level (Figure 6a) appear to be the 

major reasons for such medium agricultural production level. On 

the other hand, for a desirably high agricultural production level 

(Figure 6b), disruptive interventions in terms of increase in soil 

fertility levels as well as in water and technical resources would be 

needed. It appears, disruption through application of skilled hu-

man labor and access to financial resources did not increase agri-

cultural production significantly. On sales and marketing derived 

directly from agricultural production, the summed probability 

values (medium and high) in Figure 6a, was 88.4% while this was 

79.9% in (b) showing a 9.5% difference. Though not significantly 

different, this was contrary to normal expectations, where high 

production necessarily translated into high market sales (Benfica 

et al., 2014). It shows that market sales are independent of produc-

tion levels which have their own dynamism that are subject to 

external economic forces (size and structure of market, type of 

crop etc.). In either case, the level of production directly correlated 

with the values for processing as well as sales and marketing.  

 

STRENGTHS, LIMITATIONS AND OPPORTUNITIES 

 

Identification and choice of input variables: This is particularly 

critical since the extent and level of agricultural production as 

shown in the BBN model is contingent on the numbers and inter-

actions of all input variables.  A clear distinction of those primary 

variables that are indispensable for agricultural production 

(human, water and land resources) with secondary variables 

(improved technology, financial resources) are necessary. Mod-

elling the different distribution probabilities and determining the 

best combinations for agricultural production would therefore  

require prior expert knowledge of, or empirical data on the level 

and extent of these input variables.  Assessment of some varia-

bles may be more subjective and qualitative in nature, for exam-

ple use of qualified human labor force, assessing the fertility  

status of the soil from vegetation growth, while for others that  

may be more objective, for example estimating the amounts of 

financial or water resource resources applied. Therefore, an  

accurate approximation of all input variables would give better 

distribution probabilities. However, such prior expert knowledge 

of input variables will require incorporating temporal as well as 

spatial or regional peculiarities and differences. This means,  

input variables or disruptions have spatial-temporal relevance 

and validity and therefore, cannot be used for extremely large 

areas all the time, or rather are not a panacea for all times under 

any agricultural production environments.  These variables, will 

need to be updated, adjusted and tailored during modelling to 

the local needs of the area under study in order to forecast a 

more realistic approximation of agricultural production.  

The software NETICA as compared to other similar BBN tools 

offers unique advantages of backcasting. This method allows 

the backward approximation of input variables (parents) from a  

specific and determined value (child node) during modelling.  

 

Probability distribution of production under different scenarios 

Table 2 and 3 were used to illustrate the impacts of scaling up of 

marginal probabilities on agricultural production of the differ-

ent discrete random variables for the worst- and best-case sce-

narios respectively. The conditional probability, here in the form 

of agricultural production, is a function of both joint probabili-

ties of all discrete variables in the domain. Using calibrated  

value of cowpeas at 50% CPD (Lomeling and Huria, 2020) as 

700 kg ha-1, the BBN forecasted value for worst case scenario 

was about 692.9 kg ha-1. Scaling up the marginal probabilities of 

both financial resources and agrotechnology from 0.015 to 

0.003 (50% increase) and 0.025 to 0.1 (40% increase), respective-

ly, while keeping other variables constant increased agricultural 

production to 783.14 kg ha-1, a 12% increment. For the worst-

case scenario (Table 2), poor agricultural production was      263% 

higher than the desired medium to higher production, whereas 

this was     11% for best-case scenario (Table 3). It is evident 

therefore, that upscaling access to financial resources and to 

modern agrotechnology increased agricultural production, even 

as other discrete variables were kept unchanged. The signifi-

cance of each input variable in overall agricultural production is 

also shown in both tables, e.g. a scaleup in agrotechnology from 

17.5 to 71.76 kg ha-1 (a 24.4% increment) while for scaleup in 

financial resources from 10.5 to 21 kg ha-1 (a 50% increment). 

Generally, two conditional probability distributions of agricul-

tural production as shown in Figure 6a and 6b can be compared. 

The slight difference between both outcomes lies in the qualifi-

cation of medium and high production classifiers. As in Figure 

6a, a 59% probability distribution (medium) of agricultural  

production appeared to be strongly influenced by both available 

human and water resources, but with less or hardly any financial 

and technical inputs and low soil fertility level. On the other 

hand (Figure 6b), the medium level of all input variables gave 

higher probability distribution of production levels (>53%),  

signifying the synergistic and complementary effect of all input 

variables.  For sustainable agricultural production and a stable 

food security status, S. Sudan should on average ensure more 

access to financial and agrotechnical resources while maintaining 

a desirable soil fertility level, water resources even under the 

current deplorable state of unskilled human resources. Technical 

resources would be in terms of increased advisory and extension 

services to the farmers, provision of biofortified, hybrid and  

certified seeds as well as use of environmentally friendly organic 

chemicals for plant protection. The BBN model allows the proba-

bility adjustment of more or all discrete variables as desired to 

attain maximum conditional probability and hence possibilities 

for forecasting the highest agricultural production. 
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Conclusively, the BBN that incorporates both the fore- and back-

casting approaches can be stated as an appropriate model in 

estimating the distribution probabilities of input disruptions on 

agricultural production. The possibility of applying either quali-

tative (subjective, e.g. boolean) and quantitative (objective, e.g. real 

values) input data to the model network reinforces the conven-

ience of the approach. However, any real-life simulations using 

the model are contingent on the use of empirically generated 

data and, application of prior expert knowledge of the study  

area, while taking into consideration the spatial-temporal  

variabilities. 

 

Parameter estimation, scalability and transferability 

Understanding the inputs and processes of agricultural produc-

tion are some of the main drivers of scalability (Woltering et al., 

2019). Moreover, the underlying reasons for scaling up, the  

timing of the needed innovative interventions and sustaining 

them over time are equally critical. As in the case illustrated 

herein, the five main input random variables for agricultural 

production in S. Sudan (human, financial, water resources, land 

fertility and technology) have different parameters with no  

specific metrics in quantifying and qualifying their individual 

impacts. As in Table 2, scaling up effects showed an increase in 

production level as triggered by increase in soil fertility status, 

water and technology use than for example, improved human or 

increased access to financial resources. Raising the probability 

distribution of certain input variables like; technology, human 

and financial resources to high values, had no overall scaling up 

effect on production level. Rather, maintaining this at medium 

or optimum level appeared to have had the desired scaling up  

effect on production. 

 

Figure 6(a). A BBN showing variations in agricultural production level, processing, sales and marketing interlinkages prior to 
disruption. 

Figure 6(b). A BBN showing variations in agricultural production level, processing, sales and marketing interlinkages after 
disruption. 
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On the other hand, technology is a generic term that may include 

anything from the use of on- and off farm machines and equip-

ment, modern production methods to such input variables as 

biofortified and hybrid seeds. Challenges in calibration of scala-

bility, may also be faced when trying to measure or quantify not 

only specific threshold values of each individual input variable, 

but also collectively of all input variables needed to offset the 

desired changes in production levels. This would require,  

assessing and measuring variables that have low probability dis-

tributions, but may have higher impacts on production levels and 

vice versa.  After all, not all input variables have equal distribu-

tions and therefore uniform impacts on agricultural production. 

Similarly, scalability cannot under any circumstance be infinitely 

expanded without due consideration on the tradeoffs between 

environmental concerns and economic sustenance. Hereby, a 

breakpoint may be reached when scaling up of input variables 

becomes less profitable and environmentally unfriendly and may 

have to be reduced or, abandoned altogether. One other  

challenge is that, scalability within one given domain, or environ-

mental and socio-economic set up is not transferable and repli-

cable onto yet any other domain. Therefore, a blanket presump-

tion that every, or all input variables irrespective of spatial-

temporal variations are valid, is not only untenable but also  

economically unsustainable. 

 

Conclusion 

 

This study proposed a probabilistic-based Bayesian Belief Net-

work model in forecasting the level of agricultural production   

  in Juba County of South Sudan. The level of 

agricultural production was conceived as a joint probability  

determined to a larger extent by the joint probabilities of more 

than two or more input variables. The study showed that starting 

with known metric quantities of individual input variables a  

priori, (fertile soils, water resources, labor, financial resources, 

technology etc.) in the domain      , their values could be adjusted, 

and production levels forecasted. Modeling disruptions of two 

input variable, e.g. improved agrotechnology and increased  

access of financial resources to smallholder farmers showed a 

more than 12% increase in production. Conversely, from the 

ideal and desired production level, the BBN backcasting method 

triggered an automatic change effect on almost all individual 

input variables. This way, a clear understanding on the role of 

each individual input variable and the corresponding quantity in 

the BBN model could be made. Further, the backcasting method 

also helped in delineating and prioritizing those individual input  

variables that had the highest probabilities and therefore signifi-

cant impacts on agricultural production. Simulation of the vari-

ous production scenarios (from worst to best case) by adjusting 

one or more input variables, the BBN model showed the magni-

tude of change and hence scalability. Therefore, simulating the 

various agricultural production scenarios through timely DATs 

interventions can help in making more informed decisions on 

scalability. This will not only increase agricultural production, 

but also transform agricultural production from subsistence  

level to a more market-oriented enterprise in Juba County and 

S. Sudan at large. The BBN model is an indispensable modeling 

tool that can be used to making informed decisions on scaling up 

input variables and hence agricultural production. However, 

much research using the BBN model is still needed on under-

standing how scalability in the absence of some, or presence of 

limited DATs interventions, higher probabilities in agricultural 

production can still be sustained.  
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