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 This review paper aims to elucidate the critical genetic parameters essential for practical crop 

breeding, focusing on the nature and extent of variability, its inheritance, and the complexity 

of traits. By evaluating genetic parameters such as Genetic Coefficient of Variation (G.C.V.), 

Heritability, Genetic Advance as a percentage of the Mean (G.A.M.), correlation coefficients, 

path coefficient analysis, cluster analysis, and principal component analysis, the review  

provides a comprehensive framework for optimizing breeding strategies. Emphasizing higher 

G.C.V. values minimizes environmental effects while highlighting Heritability and G.A.M. aids 

in predicting trait transmission and potential genetic improvement. The review also under-

scores the importance of traits with high G.C.V., Heritability, and G.A.M. for effective selection 

and improvement. Additionally, cluster and principal component analyses are powerful tools 

for identifying genetically diverse parents and reducing trait dimensionality. The findings  

suggest that thoroughly understanding and applying these genetic parameters can significant-

ly enhance decision-making in plant breeding programs, ultimately leading to more efficient 

and targeted genetic improvements. 
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INTRODUCTION  

 

Crop improvement, a practice as ancient as agriculture itself, 

involves the development of new or enhanced traits in crops 

beyond their existing characteristics (Ahmed et al., 2023). This 

process encompasses two primary techniques. The first  

technique is "selection," which harnesses the inherent genetic 

diversity within plant populations. While natural selection  

predominantly drove early crop improvement, contemporary 

practices primarily rely on artificial selection. Although these 

methods have become more targeted, they are carefully regulat-

ed to ensure a diverse gene pool is accessible for each crop spe-

cies. The second technique, "breeding," involves the manipula-

tion of crop traits through methods such as crossing and genetic 

engineering (Bradshaw, 2017). Historically, early plant breeders 

did not understand genetic trait transmission and could not 

predict the outcomes of specific crosses. Despite this, advanta-

geous traits occasionally emerged and were subsequently  

selected and preserved within the population.  

In the current era, selection plays a vital role in crop breeding by 

optimizing desired traits (Plant et al., 2024). Understanding the 

types and relative proportions of genetic components, along 

with the presence of allelic and non-allelic interactions for  

various traits, essentially guides the selection and breeding 

strategies for the genetic enhancement of any crop (Al-Naggar 

et al., 2021). Breeders use genetic parameters to understand 

gene actions for quantitative and qualitative traits and evaluate 

the efficiency of different breeding methods in enhancing  
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genetic advancements (Anand et al., 2023). Estimating genetic 

parameters is crucial for determining the extent and degree of 

variability and Heritability of desirable traits for designing an 

effective genetic improvement program (You et al., 2016).  

Genetic parameters such as variance, coefficient of variation, 

Heritability, genetic advance, correlation studies, and path  

coefficient analysis gauge the population's alignment with 

breeding objectives. Although numerous studies have estimated 

genetic parameters, a comprehensive review must be provided. 

This review critically examines various genetic parameters  

utilized to elucidate the complexity of different qualitative and 

quantitative traits under investigation. 

 

CROP VARIATION 

The higher the variation for a character, the greater the extent 

of improvement through selection. Heritable variations in a pop-

ulation are the transmission of genetic differences from parents 

to offspring, originating from alterations in genetic material. 

Genetic recombination, chromosomal changes, mutations, and 

transposable genetic elements create these variations, which 

can also be induced through genetic engineering and tissue cul-

ture (Bhatia, 2018). Heritable variations are crucial for biodiver-

sity and adaptation to changing climates (Scheffers et al., 2016). 

Early studies suggest that environmental factors experienced by 

ancestors can influence heritable variations (Yin et al., 2019). 

Conversely, environmental variation arises within a single gen-

eration due to environmental changes without altering genetic 

composition. Heterogeneous environmental factors, including 

disparities in nutrients, moisture, light, temperature, and expo-

sure to disease and pests, cause non-heritable variation (Daleo 

et al., 2023). From a breeding perspective, heritable variations 

are valuable as they persist across generations, allowing for 

crop improvement. Genetic and environmental variations inter-

act to affect plant traits. For instance, a rust-resistant wheat 

variety only outperforms a susceptible one in rust-present con-

ditions. Breeders focus on heritable variations for long-term 

improvements (Cobb et al., 2019). The genetic differences exist-

ing in a breeding population determine the potentiality of its 

genetic improvement (Singh et al., 2023). 

 

GENETIC VARIABILITY 

Analyzing variability among characteristics is critical for devel-

oping a successful breeding strategy. The genetic difference in a 

breeding population determines its genetic improvement poten-

tial (Sanchez et al., 2023). The higher the variation for a charac-

ter, the greater the extent of improvement through selection 

(Aman, 2021). Knowledge of the nature and magnitude of genet-

ic variance provides an adequate selection criterion for breed-

ers to select a given genotype. The variation coefficients reflect 

the variability level of the population mean. Assessing this  

involves calculating both the genotypic coefficient of variation 

(G.C.V.) and the phenotypic coefficient of variation (P.C.V.) (Dey, 

2019). Heritable and non-heritable genetic effects give rise to 

variability in which G.C.V. signifies the heritable part and is 

more critical. In contrast, PCV signifies the genetic and environ-

mental impact and their interaction with the trait (Toor & Singh, 

2023). Traits with a high percentage of G.C.V. to PCV are desira-

ble, as high G.C.V. suggests excellent potential for successful 

selection (Khan et al., 2020). Differences between G.C.V. and 

P.C.V. indicate the environmental effect on the expression of 

traits. The more significant difference signifies the greater influ-

ence of the environment, whereas the narrower difference  

signifies less influence of the environment (Regmi et al., 2021). 

Generally, phenotypic values surpass their corresponding geno-

typic values as PCV estimates the effect of genotype and envi-

ronment. Genotypic variance and phenotypic variance were 

obtained from the analysis of variance (ANOVA) table using the 

formula suggested by (Gomez & Gomez, 1984), as shown in 

Equation (1) and Equation (2), respectively.  

 

                    (1) 

 

                    (2) 

 

Where, 

= genotypic variance,   = phenotypic variance,   = 

error variance,  = genotypic mean sum of square, 

 = error mean sum of square, r = number of replications 

 The formula suggested by (Burton, 1952) was used to calculate 

the genotypic coefficient of variation (G.C.V.) and phenotypic 

coefficient of variation (P.C.V.),  as shown in Equation (3) and 

Equation (4), respectively.  

 

 

                    (3) 

 

 

                    (4) 

 

 

Where, 

= genotypic variance,   = phenotypic variance,  = 

general population mean. 

 

HERITABILITY 

Heritability is an estimate of the proportion of variation in a 

phenotypic trait in a population due to genetic variation among 

the individuals in that population (Rasheed et al., 2023). The 

degree of total variance of a character is attributable to genetic 

factors instead of environmental factors (Pennington & Sexton, 

2024). Estimates of the coefficient of variation give information 

on the genetic variability seen in many quantitative  

variables. However, it cannot identify the level of heritable vari-

ation. As a result, the coefficient of variation and heritability 

estimates would offer a clear picture of the degree of advance-

ment or advancement that may be predicted from selection 
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(Bhadru et al., 2020). The purpose of Heritability during the ge-

netic studies of quantitative traits is the projecting role, which 

suggests the consistency of a phenotypic value to direct a 

breeding value (Fikret, 2023). The expected phenotypic value of 

an individual's offspring, expressed as the progeny's divergence 

from the population mean, defines the breeding value. It offers 

the parent's estimated transmission capacity (Hallauer, 2023). 

Therefore, Heritability offers information on transferability 

traits from generation to generation. Based on the variance 

component, there are two definitions of Heritability: broad-

sense heritability and narrow-sense heritability. A trait's broad-

sense Heritability (Hbs) defines the proportion of phenotypic 

variance attributable to genetic causes, including additive gene 

action, dominance, and epistasis. Narrow-sense heritability (Hns) 

of the trait is defined as the proportion of phenotypic variance 

attributable to additive gene action (Mishra, 2023). Heritability 

values differ among genotypes and vary for different traits. 

Knowledge of Heritability allows plant breeders to determine 

the selection procedure under the improvement program 

(Sanchez et al., 2023). Traits with high heritability estimates pass 

quickly from one generation to the next. Selection of such a 

character could be simple, hence increasing selection efficiency. 

High heritability traits are genetically determined, and environ-

mental variables have little influence on their phenotypic varia-

tion. Hence, these features could be increased by conventional 

breeding (Shrestha et al., 2023). Traits with moderate heritabil-

ity estimates may react positively to phenotypic selection and 

could be improved through heterosis breeding or hybridization 

(Adhikari et al., 2018). Low heritability estimates for a trait indi-

cate that the environment masks the phenotypic trait, making 

selection for that trait challenging (Tadesse et al., 2018).  

Heritability in a broad sense (Hbs) was computed as suggested by 

(Johnson et al., 1955) and expressed as a percentage as shown in 

Equation (5).  

 

                   (5) 

 

Where, 

= genotypic variance,   = phenotypic variance 

 

GENETIC ADVANCE 

Genetic advancement refers to the improvement in the mean 

genotypic value of selected plants over the parental population. 

It is the degree of genetic gain under particular selection pres-

sure (Vennela, 2023). Heritability estimates are helpful as highly 

heritable characters quickly progress when fixed with simple 

selection. Estimated Heritability is unreliable because it encom-

passes the effects of both additive and non-additive genes (Ilska 

et al., 2023). Thus, combining Heritability with genetic advance 

provides more accurate estimates of the trait of interest in a 

population after selection compared to using heritability esti-

mates alone (Adhikari et al., 2018; Kahani & Hittalmani, 2016). 

Assessing the effectiveness of selection in trait improvement 

relies more on the ultimate genetic advance as a percentage of 

the mean, which derives from Heritability, phenotypic standard 

deviation, and selection intensity (Lipi et al., 2021). High Herita-

bility combined with high genetic advance estimates suggests 

that additive genes primarily control the traits, indicating that 

the pedigree method of breeding can achieve improvement

(Tena et al., 2023). One can manipulate these traits according to 

requirements and achieve improvement through direct selec-

tion. Moreover, selection at an early segregating generation will 

be advantageous for selecting superior varieties (Wanga et al., 

2021). High Heritability coupled with low genetic advance indi-

cates that non-additive gene action controls these traits, which 

can be further enhanced through hybridization or heterosis 

breeding (Adhikari et al., 2018), and direct selection of these 

traits should be avoided (Bartaula et al., 2019). High Heritability 

in these traits may result from favorable environmental influ-

ences rather than the genotype. Similarly, high Heritability and 

moderate genetic advancement suggest the involvement of 

both additive and non-additive gene actions (Soliman et al., 

2023). Additive gene action occurs when two alleles of a gene 

contribute equally during the production of the phenotype, 

whereas non-additive or dominant gene action occurs when the 

expression of one allele is stronger than the other allele (Rettew 

et al., 2008).  

The expected genetic advance for each trait under a 5% selec-

tion intensity was determined using the formula outlined by 

(Johnson et al., 1955), as shown in Equation (6), and G.A.M., as 

shown in Equation (7).   

 

                   (6) 

 

 

                   (7) 

 

Where,  

GA = Genetic advance, K = constant or selection differential; K = 

2.056 at 5% selection intensity;  = mean of the population in 

which selection is employed.  

 

TRAIT ASSOCIATION  

 

Correlation coefficient 

The correlation coefficient measures the extent and direction to 

which two variables are associated and related (Baye et al., 

2020). It plays an important role in plant breeding by showing 

how changes in one character will bring simultaneous changes 

in the expression of another character. Correlation determined 

by a specific coefficient quantifies the degree of genetic and non

-genetic association between the traits and allows the indirect 

selection of correlated traits (Tuliozi et al., 2023). Observing the 

association of traits through correlation coefficients helps select 

genotypes early or simultaneously when multiple traits are  

desired. Due to the correlated response of less complex charac-

ters with high heritability estimates and simple evaluation, 

 indirect selection may derive higher genetic progress than  



621 

 

direct selection (Rehman et al., 2020). For example, suppose a 

primary trait X with low Heritability correlates highly with trait 

Y with high Heritability. In that case, indirectly improving trait Y 

and selecting trait X might be advantageous.  

The intensity of the correlation coefficient, indicated as 'r,' rang-

es from -1 to +1 and is independent of the unit of measurement. 

The value '-1' indicates the oppositely directed relation between 

the characters, i.e., a high estimate of one character is related to 

a low estimate of another character. The value '-1' indicates the 

relation in the same direction and the presence of complete 

perfect association. And the value '0' indicates the absence of 

correlation between the characters and are independent of each 

other (Moll & Stuber, 1974). The three types of correlation in 

plant breeding are phenotypic, genotypic, and environmental 

(Resende et al., 2021). Phenotypic correlation reflects the rela-

tionship between directly observable traits, assessed by evalu-

ating two traits across many individuals within a population. 

Genotypic correlation represents the association of breeding 

values, focusing on the additive genetic variance between two 

traits, and indicates the extent to which the same genes or 

closely linked genes cause simultaneous variation in both traits. 

Environmental correlations relate to environmental and non-

additive genetic deviations (Isaac, 2021). 

As a complex quantitative trait, grain yield is affected by many 

other component characters and depends on their action and 

interactions (Lephuthing et al., 2022). So, for an effective crop 

improvement program, understanding the interrelationship 

between grain yield and its contributing components is essen-

tial. Higher significant genetic correlation coefficients than phe-

notypic correlation coefficients signify the inherent relationship 

between various characters and suggest that the environmental 

effect masks the expression of the characters (Reddy & Jabeen, 

2016; Tiwari et al., 2019). Traits that are positive and significant-

ly correlated with the grain yield indicate that selection for 

these traits brings significant changes in the grain yield (Zewdu 

et al., 2024).  

The phenotypic correlation coefficient and genotypic correla-

tion coefficient among the  agro-morphological traits were  

estimated using the standard protocols suggested by (R. et al., 

1977) and from their respective variance and covariance com-

ponents as in Equation (8) and Equation (9). 

 

                    (8) 

 

 

                    (9) 

 

 

rp = phenotypic correlation coefficient , rg = genotypic correlation 

coefficient ,pCovxy = phenotypic covariance between variables x 

and y, gCovxy = genotypic covariance between variables x and y,  

  = phenotypic variance for variable x,   = phenotypic 

variance for variable y,   = genotypic variance for variable 

x,   = genotypic variance for variable y.  

 

Path coefficient analysis 

Path coefficient analysis, a statistical tool initially developed by 

(Wright, 1921), facilitates understanding how variables interact 

within a multivariate setup. The principal use of this method is 

to establish and present causal relationships between predictor 

variables and response variables through path diagrams, which 

are constructed based on experimental findings or existing the-

oretical frameworks (Gholamin & Khayatnezhad, 2020).  

Although the simple correlation coefficient indicates how yield 

and its component traits are linked, it needs to precisely under-

stand which component traits exert direct versus indirect  

effects on yield. A third variable can occasionally influence the 

correlation observed between two variables. Thus, path coeffi-

cient analysis allows for a more accurate depiction of variable 

interactions compared to correlation coefficients, highlighting 

the pathways through which each yield component exerts influ-

ence on overall yield (Olawamide & Fayeun, 2020). Path analysis 

breaks down the correlation coefficient into distinct elements: 

(a) the path coefficient or standardized partial regression coeffi-

cient, which quantifies the direct influence of a predictor varia-

ble on its response, and (b) the indirect influence of a predictor 

variable on the response through additional predictor variables 

(Dewey & Lu, 1959). Separating the direct influence of one  

variable while holding constant the indirect influences of others 

gives us a clear view of how each variable independently affects 

yield (Marinković, 1992).  

Y is the yield (effect) of the causal factors x1, x2, and x3 (yield-

related components'); r shows an association between variables; 

a, b, c, and h are path coefficients due to respective variables, 

and R indicates residual effect in Figure 1. 

Path analysis, a distinct multivariate analysis, deals with a 'closed' 

system of linearly related variables. It helps to estimate the cause-

effect relationship alongside effective selection recognizing the 

impact of multi-collinearity (Mitchell, 2020). Performing path anal-

ysis involves using the estimates of correlation coefficients. 

The direct and indirect effects of the independent traits on  

dependent traits were estimated by the following Equation (10) 

as applied by (Dewey & Lu, 1959).  

 

                 (10) 

 

Where,  = mutual association between the independent 

character (i) and dependent traits (j) as measured by the geno-

typic and phenotypic correlation coefficients, = compo-

nents of direct effects of the independent traits (i) on the de-

pendent traits (j) as measured by the genotypic and phenotypic 

correlation coefficients,  = summation of com-

ponents of indirect effects of a given independent character (i) 

on the dependent traits (j) via all other independent traits (k). 

Punam Roka et al. /Arch. Agric. Environ. Sci., 9(3): 618-625 (2024) 
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To assess the indirect effect of the path coefficient, multiply the 

direct effect path coefficient by the correlation coefficient in the 

matrix. Sum the direct effects calculated through path analysis, 

each multiplied by the correlation coefficient of the dependent trait 

across all predictor traits, to obtain the coefficient of determination 

(R²).The residual factor (R.F.), which gauges the influence of unex-

plained factors, is computed using equations (11) and Equation (12). 

 

                (11) 

 

                (12) 

 

R.F.'s value reflects how efficiently causative factors account for 

the variability observed in the dependent factor. When the R.F. 

value is lower, it implies that the variability of the predictor  

variable adequately explains the variance in the dependent trait. 

In contrast, a higher R.F. value suggests including other  

unexamined factors in the research (Yeshitila et al., 2023).  

 

MULTIVARIATE ANALYSIS  

 

Cluster analysis 

A statistical technique used in plant breeding called cluster anal-

ysis allows the identification of unique clusters or subgroups 

within a population by combining genotypes that are compara-

ble based on their genetic traits (Talefe, 2023). It enables the 

blending of qualitative and quantitative data for selection and 

reduction using a similarity coefficient. Similar genotypes are 

then grouped into a single cluster (Ali et al., 2020). Two key con-

cepts in plant breeding are intra and inter-cluster analysis, 

which groups genotypes according to specific characteristics. 

While intra-cluster analysis examines the distance within a sin-

gle cluster, inter-cluster analysis studies the distance between 

distinct clusters. The greater inter-cluster distance than the 

intra-cluster distance between the mean values of the two clus-

ters indicates more significant genetic variation between the 

genotypes of various groups (Khan et al., 2022). The proposal of 

D² statistics offers a powerful method for evaluating genetic 

divergence (Mahalanobis, 1936). In order to choose genetically 

dissimilar parents for use in hybridization programs, the D2 

statistics technique assesses the forces of differentiation at two 

levels: the intra-cluster and inter-cluster levels (Thell, 2022). 

There are two main types of clustering methods: hierarchical 

and non-hierarchical. Plant breeders commonly use hierarchical 

clustering methods, which they categorize into agglomerative 

and divisive methods. Agglomerative methods start with each 

individual as a separate cluster and then combine them based 

on their similarities. At the same time, divisive methods begin 

with all individuals in one cluster and then divide them into 

smaller clusters based on their dissimilarities (Ali et al., 2020). 

There is no similarity between the two things with the most 

significant distance. The matrix being employed determines how 

far apart two items are from one another (Forina et al., 2001). A 

dendrogram is used to illustrate the hierarchical clustering of 

genotypes. Relationships between various genotypes or groups 

of genotypes based on their genetic or phenotypic similarities or 

differences are shown in this tree-like diagram, which is used in 

cluster analysis. To produce the dendrogram, the closest pair of 

genotypes or genotype clusters are repeatedly merged depend-

ing on their genetic distances. The average or maximum  

distance between the genotypes in the two clusters is used to 

calculate the distance between the merged clusters, depending 

on the clustering algorithm used. The procedure repeats until all 

genotypes merge into a single cluster. Cluster analysis was used 

to assess the magnitude of diversity associated (Palaniyappan  

et al., 2020). The vertical direction (Y-axis) in the dendrogram 

shows the distance between clusters in some metric (Pai et al., 

2021), while the horizontal direction (X-axis) shows the data 

points. To elucidate a dendrogram, focus on the height at which 

any two genotypes join. Genotypes joined at a lower height in 

the dendrogram are the most similar, while those joined at  

higher heights are the most dissimilar (Figure 2). 

 

Principal component analysis (P.C.A.) 

Plant breeders frequently accumulate extensive datasets con-

taining numerous variables, some of which may not sufficiently 

differentiate germplasm during evaluation, characterization, 

and management. To address this challenge, plant breeders 

commonly employ principal component analysis (P.C.A.), a  

statistical technique that helps identify patterns and reduce 

redundant information within datasets. P.C.A. is particularly 

useful given the vast morphological and physiological variations 

typically encountered in crop species (Khatun et al., 2023). 

P.C.A. is an exploratory tool designed to uncover underlying 

patterns within complex datasets. This statistical method trans-

forms potentially correlated variables into a smaller set of  

uncorrelated variables known as principal components (Beattie 

& Esmonde-White, 2021). This statistical method is crucial in 

identifying essential polygenic characteristics that hold signifi-

cant importance in a plant breeding program (Singh et al., 2020). 

It retains the essential information from the original data by 

breaking down and examining the correlations between many 

variables into a smaller collection of components. This estima-

tion identifies the main traits that account for a sizable portion of 

the observed differences by assessing each trait's contribution to 

the overall reported genotype variations. As a result, breeders can 

concentrate on desirable features that significantly contribute to 

variability and advance crop improvement (Das et al., 2017). 

Figure 1. Path diagram showing cause and effect relationship. 
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Use various approaches to determine the number of components 

to consider in Principal Component Analysis (P.C.A.). One initial 

approach is to create a plot of the eigenvalues based on their 

magnitudes and observe if there is a distinct point (often  

referred to as the 'elbow') where the slope of the graph transi-

tions from steep to flat. Subsequently, we select and retain only 

those components before the elbow point. This method is known 

as the scree or elbow test (Kumar et al., 2022). Eigenvalues are 

coefficients applied to eigenvectors that give the vectors their 

length or magnitude (Rekha, 2019). The first principal compo-

nent has the highest eigenvalue, the second principal component 

has the second highest eigenvalue, and so on (Kherif & Latypova, 

2020). Another conventional approach is to retain only the com-

ponents with eigenvalues more significant than the average. In 

correlation-based P.C.A., experts commonly advise keeping only 

the eigenvalues that exceed 1 (Graffelman & De Leeuw, 2023). 

However, following this method may result in the omission of 

crucial information. Another technique involves considering the 

total variance explained by the principal components, such as 

aiming for a threshold >80% (Kherif & Latypova, 2020). A PCA 

biplot is a graphical representation combining information about 

samples and variables from a data matrix. It displays samples as 

points and variables as either vectors, linear axes, or nonlinear 

trajectories (Nishisato et al., 2021). Merging a standard P.C.A. 

plot with a plot of loadings shows clusters of samples based on 

their similarities and illustrates how strongly each characteristic 

influences a principal component. In the P.C.A. biplot, the left and 

bottom axes represent the P.C.A. scores of the samples (dots), 

while the top and right axes correspond to the loading plot, indi-

cating the influence strength of each variable (vector) on the 

principal components. This arrangement is illustrated in Figure 

3  (Escobar-Flores et al., 2019). The greater the distance of these 

vectors from the origin of a principal component (P.C.), the 

stronger their influence on that P.C. In the P.C.A. biplot, varia-

bles A, B, and E exhibit strong correlations (values near 1 or -1) 

with PC1, while their correlations with PC2 are comparatively 

weaker; conversely, variables C and D show strong correlations 

with PC2, but their correlations with PC1 are relatively weaker. 

The loadings also indicate correlations among variables: a slight 

angle between vectors suggests positive correlation, a large 

angle suggests a negative correlation and a right angle indicates 

no correlation between variables (Greenacre et al., 2022) 

 

Conclusion 

 

There is the central role of genetic parameters and multivariate 

analysis in crop breeding. Direct selection can target traits with 

higher values of G.C.V., Heritability, and G.A.M. High Heritabil-

ity and genetic advancement favor conventional breeding, while 

lower values suggest hybridization strategies. Trait association 

analysis, such as correlation and path coefficients, illuminated 

the relationships between yield and its components, guiding 

indirect selection. Multivariate techniques like Principal Com-

ponent Analysis (P.C.A.) simplified complex datasets and identi-

fied crucial traits, while cluster analysis grouped the observa-

tion into similar groups. Integrating advanced molecular tools 

with traditional methods was essential to optimize breeding 

programs. Collaborative efforts for robust data sharing can lead 

to innovative breeding strategies. These approaches collective-

ly offer a robust framework for advancing genetic enhancement 

in crops and ensuring sustainable agricultural productivity. 
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