
  

 

Archives of Agriculture and Environmental Science 9(4): 706-716 (2024) 

https://doi.org/10.26832/24566632.2024.0904010 

This content is available online at AESA  

Archives of Agriculture and Environmental Science  

Journal homepage: journals.aesacademy.org/index.php/aaes  
 

e-ISSN: 2456-6632 

ARTICLE HISTORY  ABSTRACT 

Received: 30 September 2024  

Revised received: 18 November 2024 

Accepted: 28 November 2024  

 Rice is the staple food in Bangladesh. However, soil degradation in coastal land hinders rice 

production there. This study aims to assess the suitable area for rice production in Sarankhola, 

a coastal region in Bangladesh. This study uses SRDI’s physiochemical and nutrient data as a 

secondary source. We interpolated these data using Inverse Distance Weighting (IDW) meth-

ods and weighed the data using the Suitability Modeler in ArcGIS Pro v3. The findings show 

that some parameters, like OM, N, P, Cu, and Mn, are close to or within their optimal ranges 

suggested by SRDI, for rice production in Bangladesh. On the other hand, EC, S, Ca, Mg, and Fe 

are much higher than their optimal values. The correlation analysis shows strong positive  

correlations between organic matter and nitrogen (0.97); and Ca and Mg (0.64). Moreover, 

there is a moderate positive correlation of Soil EC with S (0.43), and K (0.34), respectively. 

Conversely, a negative correlation was found between soil pH with N (-0.28) and Organic  

Matter (-0.30), respectively. The spatial distribution of soil physiochemical and nutrients  

reveals varying suitability for agriculture, with some regions showing optimal conditions while 

others face significant nutrient deficiencies. The land suitability analysis for rice production 

reveals that 40–50% of the area, mainly in the Dhansagar and parts of Khontakata unions, is 

"suitable" for rice cultivation. Meanwhile, 20–30% of Rayenda, Southkhali, and parts of  

Khontakata are "moderately suitable," necessitating additional inputs. The remaining 30-40%, 

particularly in Rayenda and Southkhali, are "marginally suitable." The results suggest that 

Dhansagar and Khontakata unions in Sarankhola are potential areas for rice production  

naturally, without using hybrid seeds. 
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INTRODUCTION 

 

Rice is an important and major cereal crop in Bangladesh owing 

to its nutritional value, higher yields, and versatile uses (Islam  

et al., 2016). Bangladesh is now self-sufficient in rice production, 

but this is not for the coastal zone (MoA-FAO, 2013; Tuong  

et al., 2014). During the wet season, farmers produce mostly low

-yielding and traditional rice varieties. In the dry season (from 

January to May), most cultivable lands remain fallow because of 

varying degrees of salinity in soil and the scarcity of good-

quality irrigation water (Karim et al., 1990; Mondal, 1997).  

According to SRDI (2010), the climate change effect will signifi-

cantly influence Bangladesh’s soil salinity levels to be increased. 

In Bangladesh, coastal areas comprise about 2.5 million ha, 

which accounts for nearly 25% of the country’s total cropland. 

Of this, around 0.84 million ha are impacted by varied salinity 

intensities (Karim et al., 1990). In addition, nutrient deficiencies, 

specifically those of N and P, are quite prevalent imposed by 

salinity. Among the saline soils’ micronutrients, Cu and Zn are 

limited, resulting in a substantial yield reduction (Shelley et al., 
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2016; AL-Huqail et al., 2022). Compared to Bangladesh’s other 

regions, dry-season rice cultivation remains very low in the 

coastal region, even though it is grown in approximately 83% of 

the nation’s potential rice-cultivating areas (Ali, 2006; BBS, 

2020). Thus, the intensification of coastal areas’ dry season rice 

cultivation has attracted noticeable attention from policymak-

ers, occupying about 30% of the nation’s total area in these  

regions (Baten et al., 2015; Islam, 2004). 

Consequently, cropland suitability analysis emerges as a crucial 

step in assuring that the available land resources can be utilized 

to their full potential for sustainable agricultural production 

practices (Halder, 2013; Lupia, 2014). The Land Suitability Anal-

ysis (LSA) is a spatial multicriteria decision analysis (MCDA) 

approach (Ferretti & Pomarico, 2013), in which numerous 

MCDA techniques can be utilized in a GIS setting, e.g., weighted 

linear combinations (WLC), analytical hierarchy process (AHP), 

Boolean overlays, ordered weighted averaging, and multiple-

objective land allocation (Rikalovic et al., 2014). Several  

researchers applied the GIS-based Multi-Criteria Decision  

Approach to develop suitability maps for rice crop production; 

for instance, over 70% of the total study region in Ethiopia was 

found to be moderately and highly suitable for rice cultivation, 

recommending taking more factors like socio-economic condi-

tions, soil fertility, and land use into consideration for future 

research works (Ayehu & Besufekad, 2015). Similar investiga-

tions were carried out in Embu, Mbeere, and Kirinyaga counties 

in Kenya by Kihoro et al. (2013); Morobe province in Papua New 

Guinea by Samanta et al. (2011); and Prachuap Khiri Khan prov-

ince in Thailand by Hussain et al. (2012). Due to Bangladesh’s 

mixed land use pattern, studies on LSA are highly emphasized 

according to several experts’ opinions (Muhsin et al., 2018). GIS 

and remote sensing techniques have been successfully used in 

site suitability analysis for salt-tolerant rice varieties like Bina 

dhan-8 and -10, and BRRI dhan-47, in 20 southern districts of 

Bangladesh. A total of 4070 mauzas under 65 upazilas of 12 

districts, were found suitable for disseminating these varieties 

(Sinha et al., 2014). In another study by Islam et al. (2018), 

22.74% of the area as highly suitable, 28.54% as moderately 

suitable, and 14.86% as marginally suitable have been identified 

for rice production in three northern districts (Rangpur, Lalmon-

irhat, and Kurigram) of Bangladesh integrating GIS and MCDA 

including nine factors such as slope, elevation, land type, topsoil 

texture, soil pH, flood-prone, rainfall, temperature, and land use. 

They also suggested producing rice up to marginally suitable 

land to gain support from insurance. 

Bangladesh’s rice-dominated agricultural sector is progressively 

exposed to natural disasters like cyclones, floods, droughts, and 

salinization, which have immediate and long-term implications 

on national food security (Alam, 2018). In coastal areas, saliniza-

tion is one of these disasters, considered a principal constraint 

to expanding dry-season rice cultivation which might affect the 

pace of achieving the SDGs targets (Alam, 2018; MoA-FAO, 

2013). Studies regarding the site suitability analysis for sustain-

able rice production in coastal regions of Bangladesh are still 

very few. The present study aims to fill this critical research gap 

by identifying the most suitable area for successful rice produc-

tion in Sharankhola upazila of Bagerhat district, Bangladesh, 

using GIS and remote sensing techniques. This suitability analy-

sis will provide valuable insights to policymakers and agricultur-

al extensionists in land-use planning, maximizing land use, 

achieving sustainable agriculture practices, and ensuring food 

security in the coastal regions of Bangladesh. 

 

MATERIALS AND METHODS 

 

Study area 

Sarankhola Upazila is located in the Bagerhat district in the 

southwestern region of Bangladesh. The absolute location of 

this study region is 22.3104° N latitude and 89.7910° E longi-

tude, covering 151.23 square kilometers with a specific area of 

22.12 square kilometers. It comprises 4 unions (Dhansagar, 

Kontakata, Rayenda, and Southkhali), 44 villages, and 11 Mou-

zas. The total population is 110,400. The region encompasses 

15,129 hectares of land (Bangladesh National Portal, 2024). It is 

surrounded by Mathbaria and Patharghata upazilas on the east, 

Mongla upazila on the west, Morrelganj upazila on the north, 

and the Bay of Bengal on the south (Figure 1). 

 

Data collection 

The soil’s physicochemical and nutrient data was collected from 

the SRDI yearly published book of 2018, which served as a sec-

ondary data source for this study. The location of the data points 

was also georeferenced from the map available in the book 

(Figure 2). The location-wise data is attached in Table S1.  

 

Data analysis 

 

Interpolation 

Spatial interpolation, a key method in geospatial analysis, 

is useful for estimating continuous spatial environmental varia-

bles for efficient decision-making and determining values at  

un-sampled locations by considering known data points (Yang et 

al., 2020). Inverse Distance Weighting (IDW) interpolation is a 

common method used in spatial analysis. It finds cell values by 

combining a set of sample points that are linearly weighted 

(Bilonick et al., 1991). Furthermore, IDW interpolation explicitly 

carries out the assumption that objects closer in proximity are 

more alike than those farther away (Hodam et al., 2017). In the  

current study, we implemented IDW using ArcGIS 10.8.2 to pre-

dict the location's soil physicochemical parameters and soil nu-

trient concentration to display the spatial distribution. 

 

Suitability analysis 

 

Parameters for rice suitability 

Land for rice suitability is shaped by climate, soil, socio-

economic, and technological factors. Optimal temperature and 

rainfall significantly boost yields (Wang & Li, 2023; Mahato et al., 

2024), while soil fertility, texture, and wetness are crucial 

(Makoi, 2020). Technological tools like remote sensing and GIS 
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further enhance land suitability assessments, improving re-

source management (Mahato et al., 2024). However, in this 

study, the rice suitability analysis is conducted based on 14 soil 

physicochemical and nutrient parameters. The optimum soil pH 

for rice production in Bangladesh is 6.0-6.5 (FRG, 2012), as low 

pH levels via high H+ activity directly inhibit plant growth 

(Schubert et al., 1990; Koyama et al., 2001). High H+ concentra-

tion triggers oxidative stress in plants, leading to the accumula-

tion of reactive oxygen species (ROS) like hydrogen peroxide 

(H2O2) and superoxide radicals (O2
− •) in plant tissues (Shi Qing-

Hua et al., 2006; Liu et al., 2011). The optimum electrical conduc-

tivity (EC) level for Bangladeshi soil is between 0 and 4 dS/m 

(SRDI, 2010), with higher levels indicating potential salinity  

issues that can limit crop growth and microbial activity, cause 

structural problems, and lead to sodium toxicity (NRCS, 2011). 

The soil in Bangladesh should contain at least 2% organic matter 

(OM) for successful crop production (Islam, 1990), but  

approximately 54% of 7.6 million hectares is severely deficient, 

Figure 1. Study area and sampling points.  

Figure 2. Georeferenced map - (a) Base map; (b) Georeferenced sampling points.  
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necessitating the addition of compost, vermicompost, cow dung, 

bio-organic fertilizer, or poultry manure to sustain rice production 

(SRDI, 2010; FRG, 2012). The optimum nitrogen content ranges 

from 0.02 to 0.12% (Ahsan & Karim, 1988), and deficiency  

impedes chlorophyll and protein synthesis, reducing photosyn-

thesis and dry matter production in rice (Wang et al., 2020), 

while excess nitrogen can lead to overgrowth and increased 

pest and disease susceptibility (Ali et al., 2017). Phosphorus is 

the second most limiting nutrient after nitrogen for rice, with an 

optimum level of 6 µg/g, and deficiency results in reduced tiller-

ing, stunted growth, and poor development (Portch, 1984; Rice 

Knowledge Bank Website, 2020). Sulfur, with an optimum  

content of 22.51-30.00 µg/g (FRG, 2012), is crucial for nitrate  

uptake and nitrogen metabolism, with deficiency leading to  

reduced plant growth (Prosser et al., 2001; Abdallah et al., 2010). 

The optimum potassium content is 0.271-0.36 meq/100 g (FRG, 

2012), and deficiency results in decreased potassium concentra-

tion in shoots and roots and increased antioxidant enzyme  

activities (Liu et al., 2013). Calcium should be present at 4.51-

6.00 meq/100g (FRG, 2012), with deficiency leading to mem-

brane injury and reduced antioxidant capacity (Van Steveninck, 

1965; Tewari et al., 2004; Schmitz-Eiberger et al., 2002; Chao  

et al., 2009; Paranhos et al., 1999). Magnesium, with an optimum 

value of 1.16-1.50 meq/100g (FRG, 2012), is essential for root 

growth and photosynthesis, with deficiency leading to reduced 

photosynthetic rates (Cakmak et al., 1994; Tränkner et al., 

2018). The optimum copper content in soil is 0.451–0.60 µg/g 

(FRG, 2012), with deficiency resulting in stunted growth and leaf 

necrosis (Broadley et al., 2012). Zinc content should be 1.351–

1.80 µg/g (FRG, 2012), with deficiency impairing rice seedlings' 

adaptation to anaerobic soil conditions (Moore & Patrick, 1988). 

Iron content should be 9.1–12.00 µg/g (FRG, 2012), with defi-

ciency severely affecting lowland rice growth and altering phos-

phate concentrations (Saenchai et al., 2016). Magnesium, with an 

optimum content of 2.56-3.00 µg/g (FRG, 2012), is often deficient 

in alkaline soils, restricting plant growth (Behera & Shukla, 2014), 

while excess levels can be toxic (Migocka & Klobus, 2007). Finally, 

boron content should be 0.451-0.60 µg/g (FRG, 2012), as insuffi-

cient boron decreases crop yield, weakens grain quality, and  

increases disease susceptibility (Goldbach et al., 2007). Table 1  

summarizes the selected parameters, data range, and optimum 

level for rice production in this study.  

 

Reclassification and ranking 

Based on the optimum level and Table 1, the interpolated raster 

data of 14 selected parameters were reclassified and ranked. 

The raster data is classified into five levels (optimum, near-

optimum, moderate, suboptimal, and poor) with corresponding 

rankings (5 to 1). Each level has specific criteria and outcomes 

for rice suitability. The detailed classification and ranking sys-

tems are presented in Table 2. 

 

Weighting 

Various soil parameters (e.g., pH, EC, OM, etc.) are assigned weights 

(%) based on their importance in determining rice suitability, as 

advised by SRDI officers (as an expert opinion) and shown in Table 

3. The weight values also align with the existing literature. Like, 

larger weights are assigned to pH, EC, and nitrogen because of their 

vital roles in nutrient availability, salinity control, and plant develop-

ment (Khan et al., 2024). Additionally, potassium and phosphorus 

are modestly weighted because of their roles in disease resistance 

and root formation (Kanojia & Sreekesh, 2022). Soil structure and 

plant health are maintained by organic matter, calcium, and magne-

sium; iron, zinc, and sulfur are necessary, although in lower 

amounts (Kanojia & Sreekesh, 2022). Since copper, boron, and man-

ganese are micronutrients needed in trace amounts for rice devel-

opment, they have lower weights (Duan et al., 2019). 

 

Weighted overlay analysis for soil-suitable land 

The suitability modeler in ArcGIS Pro v3 was used to calculate 

and visualize the land for rice-suitable areas in Sarankhola 

upazila. It starts with soil physicochemical and nutrient parame-

ter selection, followed by interpolation and reclassification of 

raster data. A suitability modeler then uses raster insertion and 

weighted overlay (based on expert opinion and literature  

review) to calculate suitability levels. The results classify land as 

highly suitable, moderately suitable, marginally suitable, or 

poorly suitable for use. 

Md. Anisul Kabir et al. /Arch. Agric. Environ. Sci., 9(4): 706-716 (2024) 

Table 1. Selected parameters and their optimum level with remarks. 

Parameters Range of the data for this study Optimum values Remarks 

pH 5.6-6.5 6.0-6.5 Slightly less than optimum level 

EC 1.4-34.27 0-4 Far from optimum 

OM 1.21-2.06 2 Optimum level 

N 0.07-0.12 0.02-0.12 Optimum level 

P 3.01-56 6 Far from optimum 

S 6.43-198.33 22.51-30.00 Far from optimum 

K 0.22-0.92 0.271-0.36 Slightly less than optimum level 

Ca 16.27-30.29 4.51-6.00 Far from optimum 

Mg 5.37-16.02 1.16-1.50 Far from optimum 

Cu 0.98-4.2 0.451-0.60 Far from optimum 

Zn 0.46-1.5 1.351-1.80 Below optimum level 

Fe 20.11-42.75 9.1-12.00 Far from optimum 

Mn 1.38-4.82 2.56-3.00 Slightly less than optimum level 

B 0.09-1.45 0.451-0.60 Far from optimum 

Source: (FRG, 2012) 
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RESULTS AND DISCUSSION  

 

Descriptive statistics 

The pH range is found to be 5.6 to 6.5; the mean pH value was 

observed to be 5.83±0.23, which is slightly below the optimum 

range of 6.0-6.5 (Figure 3A). The EC ranges from 1.43 to 34.27 

ds/m, with a mean of 10.47±7.32 ds/m (Figure 3B). This is much 

higher than the ideal range of 0–4 ds/m, which could mean that 

the soil is too salty. Organic matter (OM) content varies from 

1.21% to 2.06%, with a mean of 1.57±0.17% (Figure 3C), which 

is close to the optimum value of 2%, indicating relatively ade-

quate organic content. The nitrogen (N) concentration varies 

between 0.07% and 0.12%, with an average of 0.09±0.01% 

(Figure 3D). This is comfortably within the recommended range 

of 0.02-0.12%, indicating adequate nitrogen levels. The phos-

phorus (P) level in the soil ranges from 3.01 to 56.24 µg/g 

(Figure 3E), with an average of 6.99±6.85 µg/g, which closely 

matches the optimal value of 6 µg/g. Potassium (K) shows a 

range of 0.22 to 0.92 meq/100 g soil, with a mean of 0.49±0.15 

meq/100 g soil (Figure 3F), slightly above the optimum range of 

0.27–0.36 meq/100 g soil, indicating marginally high potassium 

levels. Sulfur (S) content ranges from 6.43 to 198.33 µg/g soil 

(Figure 3G), with a mean of 86.08±38.77 µg/g soil, significantly 

higher than the optimum range of 22.51-30.00 µg/g soil, which 

may indicate excessive sulfur presence. Zinc (Zn) content varies 

from 0.46 to 1.5 µg/g soil, with a mean of 0.97±0.24 µg/g soil 

(Figure 3H), slightly below the optimum range of 1.35-1.80 µg/g 

soil, suggesting zinc deficiency. Boron (B) content ranges from 

0.09 to 1.45 µg/g soil, with a mean of 0.40±0.25 µg/g soil (Figure 

3I), which falls within the optimum range of 0.45-0.6 µg/g soil. 

Calcium (Ca) levels are significantly high, ranging from 16.27 to 

30.29 meq/100g soil (Figure 3J), with a mean of 23.05±3.40 

meq/100g soil, far exceeding the optimum range of 4.51-6.00 

meq/100g soil. Magnesium (Mg) content ranges from 5.37 to 

16.02 meq/100 g soil, with a mean of 9.0±1.98 meq/100 g soil 

(Figure 3K), which is also much higher than the optimum range 

of 1.16–1.50 meq/100 g soil. Copper (Cu) levels range from 0.98 

to 4.2 µg/g soil, with a mean of 2.54±0.69 µg/g soil (Figure 3L), 

within the optimum range of 0.45–6.00 µg/g soil. Iron (Fe)  

content shows a wide range from 20.11 to 42.75 µg/g soil 

(Figure 3M), with a mean of 29.46±5.08 µg/g soil, which is above 

the optimum range of 9.1–12.00 µg/g soil. Manganese (Mn)  

levels range from 1.38 to 4.82 µg/g soil, with a mean of 

2.67±0.71 µg/g soil (Figure 3N), within the optimum range of 

2.56-3.00 µg/g soil. Overall, some parameters, like OM, N, P, Cu, 

and Mn, are close to or within their optimal ranges. Other  

parameters, like EC, S, Ca, Mg, and Fe, are much higher than 

their optimal values. 

Soil physiochemical properties and nutrient levels can be effec-

tively balanced using green and engineering-based remediation 

techniques (Nouri et al., 2017). Green remediation strategies 

involve leaching with low-salinity water to control salinity levels 

and enhance drainage, thereby preventing salt accumulation 

(Hoffman & Shalhevet, 2007). Leaching and the incorporation of 

organic matter, such as compost, can mitigate sulfur levels (Iram 

et al., 2019). To reduce potassium and calcium levels, refrain 

from using fertilizers that contain these elements and consider 

the addition of gypsum to improve leaching. Enhancing the  

calcium-to-magnesium ratio may assist in regulating elevated 

magnesium levels (Kabir et al., 2024). Enhancing soil aeration via 

drainage can mitigate excess iron (Huang et al., 2016), while the 

application of lime is beneficial for acidic soils. Zinc deficiency 

can be addressed with zinc fertilizers and phytostabilization 

(Padmavathiamma & Li, 2009). Engineering-based remediation 

employs precision agriculture through remote sensing and soil 

sensors to facilitate real-time nutrient monitoring, thereby  

optimizing the use of fertilizers and water (Sishodia & Ray, 

2020). Sustainable practices include controlled-release  

fertilizers and community engagement through bioremediation 

(Sharma et al., 2024). Smart irrigation systems and soil data  

platforms enhance nutrient management and decision-making 

efficiency (Lakhiar et al., 2024). These methods enhance sustaina-

ble soil management through the integration of technology and 

community engagement. 

Table 2. Reclassification scheme for the raster data. 

Condition Ranking Range Comment 

Optimum 5 Optimum level The condition is ideal and produces the best possible  
outcome 

Near Optimum 4 Slightly less than optimum level Still very effective 

Moderate 3 Not optimum nor poor The condition is acceptable, but improvements could 
enhance the outcome 

Suboptimal 2 Level below than optimum Leads to less effective yields 

Poor 1 Far from optimum Yields are significantly compromised 

Table 3. Weight for the selected parameters. 

Parameters Weight (%) 

pH 10 

EC 12 

OM 8 

N 12 

P 9 

K 9 

S 6 

Zn 5 

B 4 

Ca 8 

Mg 7 

Cu 3 

Fe 5 

Mn 2 
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Correlation analysis of soil physicochemical parameters and 

soil nutrients 

The Pearson correlation matrix in Table 4 shows the intricate 

relationships among several soil physicochemical characteristics 

and soil nutrients. The relationship between OM and N in the 

soil is strongly positive and significant, with a correlation  

coefficient (r) of 0.97. This emphasizes the crucial importance of 

organic matter in retaining nitrogen in the soil. The correlation 

values of 0.43 and 0.34 suggest a moderately positive  

association between EC, S, and K, respectively. This implies that 

soils with higher EC levels typically have greater concentrations 

of these nutrients. Conversely, both OM and N exhibit negative 

associations with pH (r = -0.30 and -0.28), indicating that soils 

with elevated quantities of organic matter and nitrogen tend to 

have a lower acidity. The same trend was also discovered by 

Ghode et al. (2020). Moreover, a robust positive correlation (r = 

0.64) exists between Ca and Mg, suggesting that these two  

elements are commonly present in soil matrices, also found by 

Sen and Zaidi (2017) in soil samples in the Eastern Plain Zone of 

Eastern Uttar Pradesh. The matrix indicates a moderate positive 

connection (r = 0.24) between Cu and OM. Simultaneously, P 

demonstrates a negative correlation with EC (r = -0.26),  

indicating a competitive interaction or separate sources for 

these elements. The correlation analysis results indicate a  

significant association between OM and N in the soil  

samples. 

 

Figure 3. Descriptive statistics of the collected soil sample's physicochemical 
parameters and soil nutrients including mean, minimum, and maximum. 

Table 4. Pearson Correlation among soil physicochemical parameters and soil nutrients. 

  pH EC OM N P K S Zn B Ca Mg Cu Fe Mn 

pH 1                           

EC 0.12 1                         

OM -0.30 -0.17 1                       

N -0.28 -0.18 0.97** 1                     

P 0.06 -0.26 -0.03 -0.03 1                   

K -0.19 0.34 0.23 0.18 -0.12 1                 

S -0.13 0.43 -0.15 -0.18 -0.12 0.20 1               

Zn -0.16 -0.03 0.07 0.05 -0.02 0.09 -0.15 1             

B 0.20 0.40 0.08 0.08 -0.01 0.33 0.10 0.06 1           

Ca 0.14 0.02 0.07 0.06 -0.06 0.12 -0.18 0.19 0.32 1         

Mg 0.25 0.06 -0.28 -0.29 0.02 0.05 -0.12 -0.004 0.09 0.64**         

Cu -0.15 0.008 0.24 0.24 0.03 -0.05 -0.24 0.15 -0.04 0.14 0.02 1     

Fe -0.02 0.008 0.067 0.015 0.01 0.19 -0.01 0.14 0.14 0.12 0.06 1.01E-5 1   

Mn 0.09 -0.01 -0.31 -0.30 0.06 -0.04 -0.10 0.02 -0.05 0.13 0.27 -0.01 -0.03 1 

2- tailed test of significance is used and correlation is significant at a 0.05 level (**) 
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Spatial pattern of soil physicochemical properties and nutrients 

Figure 4(A) shows five different soil pH levels across the study 

area. The central and south-eastern parts represent mainly the 

"optimum" pH level, which is suitable for most crops. In addition, 

most of the northern part is visualized as "poor," indicating un-

suitable for agriculture. In Figure 4(B), the EC is presented as a 

"near optimal" level from the north-eastern to the southern part, 

which is suitable for farming. The ''Organic Matter'' level from 

Figure 4(C) shows most of the portion of the upazila as "Sub-

Optimum," which denotes localized areas with lower organic 

content that may affect soil fertility. According to Figure 4(D), 

the total nitrogen, which displays a widespread area as "near 

optimum," seems to have an appropriate nitrogen content. Fig-

ure 4(E) exhibits a heterogeneous distribution of phosphorus, 

where north-central, central, and southern regions are dominat-

ed by "near optimum" levels. The potassium in Figure 4(F) is 

placed as the "near-optimum" level prominently in the south and 

the "moderate" level in the center. Figures 4(G) and 4(H) for  

sulfur and zinc, respectively, show "moderate" levels in the cen-

tral to southern and northeastern regions, indicating adequate 

but not ideal nutritional levels. The locations with "optimum" 

levels of Boron from Figure 4(I) are depicted in the north and 

center and "moderate" levels in the northeast and south zones. 

In Figure 4(J), calcium has a "poor" category in the northeastern 

part, signifying a severe shortage, while from northeast to south-

east are "moderate" levels. The central area of Figure 4(K) mainly 

shows "sub-optimum" levels of magnesium, while the majority of 

the upazila shows "moderate" levels. According to Figure 4(L), the 

northern and southern regions are marked as "poor" and 

"suboptimum" levels for copper, respectively. Figure 4(M) demon-

strates the iron levels, where the "sub-optimum" and "poor" levels 

are presented in some places throughout both central and north-

ern regions, and the "poor" level indicates severe iron deficits. In 

contrast, the manganese level in Figure 4(N) shows "optimum" 

values across a large portion of the upazila, reasoning manganese 

levels that are generally adequate. 

Figure 4. Spatial distribution of soil physiochemical and nutrient levels in Sarankhola Upazila where dark green indicates optimum values, 
light green denotes near-optimum levels, light purple represents moderate levels, pink shows suboptimal levels, and red indicates poor levels. 
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Soil suitability for rice production in the study area 

Land suitability analysis for rice production in Sarankhola 

Upazila indicates a diverse agricultural environment in Figure 5. 

Approximately 40–50% of the upazila fall into the "Suitable" 

category, suggesting optimum conditions for rice growing, main-

ly in the northern and western regions such as Dhansagar and 

parts of Khontakata. These sites have favorable soil, water avail-

ability, and terrain, making them excellent for high-yield rice 

growing. Meanwhile, 20-30% of the upazila is designated as 

"Moderately Suitable," with such sections being in Rayenda, 

Southkhali, and parts of Khontakata. Although some areas can 

support rice farming, they may require extra inputs or adjust-

ments, such as better water management or soil amendments, to 

attain peak yields. The remaining 30-40% of the upazila,  

especially in Rayenda and Southkhali, is classified as "Marginally 

Suitable." These places suffer more major hurdles, such as low 

soil quality, salt problems, and insufficient drainage, making rice 

farming less desirable. Surprisingly, some current farms are 

located in these moderately or marginally suitable places, 

demonstrating the importance of factors such as previous land 

usage, local adaptability, and economic restrictions in farming 

decisions (Aboye et al., 2024; Behairy et al., 2022). These farms 

also highlight possible limits in the suitability model, underscor-

ing the importance of on-site verification to ensure the model 

appropriately reflects real-world conditions. Overall, while 

Sarankhola Upazila has several places that are ideal for rice 

cultivation, a large percentage of them need focused interven-

tions or adaptation techniques to improve agricultural  

performance. 

Figure 5. Union-wise rice suitability based on selected soil parameters. 
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 Conclusion 

 

The study examined the physicochemical parameters and nutri-

ent composition of soil samples collected from Sarankhola 

Upazila. The pH range observed was slightly acidic, ranging from 

5.6 to 6.5, with a mean of 5.83±0.23. This falls below the optimal 

range of 6.0-6.5. The electrical conductivity was found to be con-

siderably high (mean 10.47±7.32 ds/m), suggesting the presence 

of potential salinity concerns. The levels of organic matter and 

nitrogen were found to be at or close to the optimal range. How-

ever, it was observed that electrical conductivity, sulfur, calcium, 

magnesium, and iron levels were above their optimal ranges, 

indicating an excess of these nutrients. An analysis of the Pear-

son correlation indicated a significant positive relationship (r = 

0.97) between organic matter and nitrogen, highlighting the  

importance of organic matter in nitrogen retention. There were 

moderate correlations observed between EC and sulfur (r = 0.43) 

and potassium (r = 0.34). The strong correlation (r = 0.64)  

observed between calcium and magnesium indicates a likely  

co-occurrence of these elements in the soil. Negative correla-

tions were observed between pH and both organic matter (r = -

0.30) and nitrogen (r = -0.28), indicating that higher levels of 

these components are associated with lower acidity. The spatial 

analysis showed that pH levels were optimal in central and 

southeastern areas, while EC levels were near-optimal across 

much of the upazila. The presence of insufficient organic matter 

in various regions has had a negative impact on soil fertility.  

Nitrogen and phosphorus levels were near optimal, but sulfur 

and zinc levels were only moderate. Calcium and magnesium 

were predominantly moderate to suboptimal, with some areas 

showing severe deficiencies. Iron levels were suboptimal, while 

manganese levels were generally adequate across the upazila. 

Land suitability analysis revealed that 40–50% of Sarankhola 

Upazila is "suitable" for rice cultivation, mainly in the northern 

and western regions. Around 20 to 30% of the area is 

"moderately suitable," requiring additional inputs for optimal 

yields. The remaining 30–40% are "Marginally Suitable" due to 

issues like low soil quality and salinity, underscoring the need for 

targeted interventions such as improved water management and 

soil amendments to enhance agricultural productivity. These 

results suggest that future research should focus on refining land 

suitability models, incorporating more localized data, and testing 

the effectiveness of tailored agricultural practices in improving 

marginal lands. 
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