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 Declining soil fertility and the limited use of sustainable soil organic amendments has resulted 

in reduced crop productivity in Nepal. This study assessed biochar produced from rice husk 

and sawdust at three different pyrolysis temperatures (200°C, 400°C, and 600°C), character-

ized their properties and applied them as soil amendments to test their agronomic effect on 

kidney bean production. The highest biochar yields were achieved at lower pyrolysis tempera-

tures (200°C) for both rice husk (40%) and sawdust (38.4%). Ash content was significantly 

higher in rice husk (33.6%) compared to sawdust biochar (5.8%) across all temperatures. Saw-

dust biochar had higher volatile matter (91%) than in rice husk biochar (61.5%). The fixed car-

bon content was greater at 200°C and 400°C for both rice husk and sawdust biochar. FT-IR 

result showed significant loss of aromatic groups with increasing temperature. Biochar from 

all three temperatures was then used in a pot experiment to grow kidney beans and assess 

their agronomic effects. Seven treatments were used: control (CK), rice husk biochar at 200°C 

(RH200), 400°C (RH400), and 600°C (RH600), sawdust at 200°C (SD200), 400°C (SD400), 

and 600°C (SD600) following a completely randomized design with 3 replications per treat-

ment. Cattle manure was applied uniformly (25 t ha-1) across all treatments, including the con-

trol. Over 50 days, SD400 resulted in the tallest plants, SD600 produced the thickest stem and 

RH600 had the highest number of leaves. Biochar applications showed significantly higher 

fruit weight and counts, which was on average 24 % higher than the control, with no significant 

differences between rice husk and saw dust biochar at three different temperatures. The 

study suggests that high quality biochar can be produced from both rice husk and saw dust and 

its application boost legume yields, which is crucial for enhancing country’s nutritional and 

food security. 

 

©2024 Agriculture and Environmental Science Academy 

Keywords  

Biochar 

Pyrolysis temperature 

FTIR 

Productivity  

 

 

Citation of this article: Aryal, P., Vista, S. P., Dhakal, R., Basnet, B., Chand, P., Gyawali, S., & Pandit, N. R. (2024). Assessment of biochar 

quality and agronomic efficiency produced from rice-husk and saw-dust at different temperature regimes. Archives of Agriculture and 

Environmental Science, 9(4), 667-675, https://dx.doi.org/10.26832/24566632.2024.090405 

Assessment of biochar quality and agronomic efficiency produced from rice-husk 
and saw-dust at different temperature regimes 

Purnika Aryal1* , Shree Prasad Vista2, Rabindra Dhakal3, Bidhika Basnet1, Purnesh Chand1, 
Sapana Gyawali1 and Naba Raj Pandit4  
1Himalayan College of Agricultural Sciences and Technology (HICAST), Kirtipur, Kathmandu, Nepal 
2Nepal Agricultural Research Council (NARC), National Soil Science Research Center, Lalitpur, Nepal 
3Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal  
4International Maize and Wheat Improvement Center (CIMMYT), Lalitpur, Nepal 
*Corresponding author’s E-mail: purnika.aryal@gmail.com  

INTRODUCTION 

 

Biochar is a fine-grained, carbon-rich material produced through 

the pyrolysis of biomass in an oxygen-limited environment. Bio-

char’s  recalcitrant nature allows it to remain stable in soil for 

hundreds to thousands of years, making it an effective carbon 

(C) sequestration method to combat climate changes (Lehmann 

et al., 2006; Kumari et al., 2022). Several studies have document-

ed the significant improvement of soil physicochemical and  

biological properties upon biochar addition such as increased 

porosity, surface area, pH, cation exchange capacity (CEC),  

organic carbon, plant available water (PAW), plant available 
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nutrients such as nitrogen (N), phosphorous (P), potassium (K) 

and microbial activities (Elkhlifi et al., 2023). The production 

process of biochar is significantly influenced by factors such as 

temperature, pressure, and the composition of feedstocks,  

resulting in varied yield percentages depending on the specific 

thermochemical process (Chi et al., 2021). Pyrolysis can be cate-

gorized into three main types based on thermo-chemical pro-

cess conditions: slow, flash, and fast pyrolysis (Adekanye et al., 

2022). Slow pyrolysis operates at lower temperature (250 to 

500 °C) with a low heating rate and longer residence time 

(Adekanye et al., 2022; Manyà, 2012). In contrast, flash and fast 

pyrolysis occur at moderate to higher temperatures with high 

heating rates and short residence times (Adekanye et al., 2022). 

Low temperature pyrolysis (300 to 500 °C) results in higher 

biochar yield and carbon content, while high temperature pyrol-

ysis (> 500 °C) produces lower yields but higher surface area 

with greater adsorption capacities for various compounds 

(Manyà, 2012). As the charring temperature increases, the alka-

linity of biochar also increases. (Ahmee & Yakob, 2021). 

Different pyrolysis temperature and feedstocks produce bio-

char with different qualities and distinct functional groups such 

as hydroxyl, carboxyl, carbonyl, aldehyde or ketone, aliphatic 

and aromatic groups (Janu et al., 2021; Pandit et al., 2017).  

During pyrolysis, biochar undergoes thermochemical conver-

sion, altering its carbon constituent to form a compound that is 

depleted of hydrogen and oxygen (Küçükbayrak & Kadioǧlu, 

1989; Pariyar et al., 2020). This process results in the formation 

of an aromatic carbon structure with both crystalline phase 

(condensed polyaromatic sheets) and amorphous phase 

(randomly organized aromatic rings) (Pariyar et al., 2020; 

Wiedemeier et al., 2015). Lower pyrolysis temperature can re-

tain more oxygenated functional groups, while higher tempera-

ture enhance aromatic structures and reduce oxygen content, 

influencing the stability and reactivity of biochar (Song & Guo, 

2012). Biochar having high oxygen content (27–34%) primarily 

in the form of phenolic and carboxylic acid groups, along with 

sulfonic group, improves its catalytic activity and molecular ab-

sorption on the catalyst surface (Chi et al., 2021). Functional 

groups are crucial in determining surface complexation, adsorp-

tion-desorption mechanism, physicochemical properties of soil 

and carbon sequestration (Janu et al., 2021; Kul et al., 2021). 

Morphological characteristics (pores, surface area) and the ap-

pearance of the functional groups can be derived from Fourier-

transform-infrared spectroscopy (FTIR) and scanning electron 

microscope (SEM)  (Janu et al., 2021; Zaitun et al., 2022).  

The effect of biochar on soil properties is greatly influenced by 

the types of biochar produced from various feedstocks and  py-

rolysis conditions, as well as its interaction with the soil, includ-

ing re-dox reactions, adsorption-desorption, and precipitation-

dissolution and climatic conditions (Bruun et al., 2008; 

Küçükbayrak & Kadioǧlu, 1989; Pariyar et al., 2020). In low fer-

tile soil, biochar has shown improved physicochemical proper-

ties like porosity, pH, OC and CEC (Cornelissen et al., 2013; 

Martinsen et al., 2014; Obia et al., 2016).  Due to its highly po-

rous structure, large surface area and high CEC, biochar has a 

strong sorption capacity, which enhances nutrient availability, 

retention capacity and nutrient use efficiency (NUE) (Pandit  

et al., 2024; Puga et al., 2020). Several previous studies have  

reported increased crop productivity upon biochar addition 

primarily due to improved soil physicochemical and biological 

properties and enhanced Nitrogen Use efficiency (Cornelissen et 

al., 2013; Kapoor et al., 2022; Pandit et al., 2021).  In Nepal, most 

research is carried on assessing the effect of biochar on cereal 

crops such as maize and rice, as well as commercial vegetables 

like cauliflower, potato, tomato, okra, and radish while studies 

on legumes particularly kidney beans are limited. Moreover, 

most Nepalese soils are acidic in nature, with around 67% culti-

vated areas having low pH and contain low to medium level of 

organic matter and essential soil nutrients such as nitrogen, 

phosphorous and potassium. Applying biochar in these low  

fertility soils could be a promising nourisher for enhancing soil 

fertility and yields in Nepal (Kumari et al., 2022). Kidney beans, a 

variety of the common bean, Phaseolus vulgaris, are herbaceous 

annual plants grown extensively worldwide for their edible dry 

seeds or unripe fruit (Nasiri et al., 2024). Kidney beans belonging 

to family leguminous are native to the central America and  

Mexico. Kidney beans are known for their ability to improve soil 

fertility and enhance nitrogen enrichment through biological 

nitrogen fixation (BNF) (Etminani et al., 2021). The addition of 

biochar in soil has been shown to increase the levels of biological 

nitrogen fixation (BNF) and nodulation in legume crops such as 

white clover (Trifolium repens) (Rillig et al., 2010), soyabean 

(Glycine max) and alfalfa (Medicago sativa) (George et al., 2012; 

Rillig et al., 2010).  

Although various studies have documented the positive agro-

nomic effects of biochar on crop productivity, their remains a 

lack of mechanistic explanations (Cornelissen et al., 2018; Pandit 

et al., 2024). It is crucial to evaluate the properties and structure 

of biochar produced from various feedstocks and pyrolysis tem-

peratures, as well as their mechanistic effects on crop growth 

and development in controlled environments. In this study, bio-

char produced from two different feedstocks (sawdust and rice 

husk) pyrolyzed at three temperature levels (200°C, 400°C and 

600°C) underwent proximate analysis to determine moisture 

content, volatile matter, and fixed carbon content. In addition, 

the chemical composition and functional groups of the biochar 

produced from both rice husk and saw dust at these three tem-

peratures were assessed using Fourier-transform infrared spec-

troscopy (FTIR). There are few, if any, studies on the characteri-

zation of biochar using FTIR in Nepal. A comprehensive study 

covering aspects from biochar yield, proximate analysis, FT-IR 

analysis to its application as a soil amendment has been lacking 

in Nepal, highlighting the necessity of such research.  Therefore, 

the study aims to assess the properties of biochar produced 

from two different feedstocks at three different pyrolysis tem-

peratures and examine their agronomic effect on kidney bean 

production.  
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MATERIALS AND METHODS 

 

Biochar production 

Rice husk and sawdust were used as feedstock for biochar pro-

duction. Rice husks were collected from Bhawani Mill located in 

Patan, Lalitpur. Saw Dusts were collected from Anand Kasta 

Furniture Udyog located in Sanepa Road, Lalitpur. Collected rice 

husks and saw dust were kept in a dry storage room before bio-

char production. Pyrolysis of feedstocks was conducted at three 

different temperature levels 200°C, 400°C and 600°C to assess 

the properties and composition of the resulting biochar pre-

pared from the drum method as well as its impact on the growth 

of kidney beans. The locally available drum along with tempera-

ture gun was used for the thermo-conversion process. 

 

Yield and proximate analysis 

The biochar yields were calculated based on the mass difference 

before and after charring (Equation 1). A sampling weight of 500 

g was used for each type of biochar. 

 

Yield (%) = Mass of biochar (g)                                                                  (1) 

 

Moisture content was determined by drying 2 g of soil sample in 

a crucible at 105°C. Volatile matter contents (% dry weight  

basis) were determined by burning 2 g of biochar in a covered 

crucible at 950°C for 11 minutes. The ash content (dry weight 

basis) was determined by burning the sample in an uncovered 

crucible at 750°C for two hours. Fixed carbon content was  

calculated using the formula mentioned in equation 2 (Adeniyi  

et al., 2022).  

 

Fixed carbon content (%) =100- (%moisture + %ash + %volatile 

matter)                             (2) 

 

FT-IR 

Fourier transform infrared (FTIR) spectra of biochar produced 

from both sawdust and rice husk feedstocks were collected to 

assess their composition and structure. The FTIR spectropho-

tometer used for the specific measurements was 'Shimadzu IR 

Tracer-100'; a high-precision equipment with excellent meas-

urement speed, sample sensitivity, and the spectral resolution 

with analytical software (Marahatta et al., 2024). After measur-

ing the IR spectra of each of these biochar sample specimens, 

the spectrophotometer was calibrated at ambient air condition-

ing, and it’s in-built functions were standardized. As soon as the 

instrument reached the fully-functional states, a trace amount 

of every sample was injected into its sample compartment, and 

the concerned interferograms (intensity of IR over time) were 

recorded. Each sample of 10 milligrams was kept in an FT-IR 

machine, in which sample absorbed varying amounts of infrared 

(IR) energy from the source depending on its functional groups. 

All samples were ground into powders prior to spectral acquisi-

tion. spectrum data was used for bond analysis.  

 

Experimental design and cultivation practices 

A pot experiment was conducted from 30th July 2023 to 23rd 

September 2023 in Kathmandu district, Nepal (27.4415° North 

and 85.1918° East). Seven treatments with three replications 

including 1) Control (CK), 2) rice husk biochar produced at 200 °

C mixed with manure (RH200), 3) rice husk biochar produced at 

400 °C mixed with manure (RH400), 4) rice husk biochar pro-

duced at 600 °C mixed with manure (RH600), 5) sawdust bio-

char produced at 200 °C mixed with manure (SD200), 6) saw-

dust biochar produced at 400 °C mixed with manure (SD400), 

and 7) sawdust biochar produced at 600 °C mixed with manure 

(SD600) were arranged in Completely Randomized Design 

(CRD). In each pot except the control, 0.8 g of biochar (2 t ha-1) 

and 10 g of manure (25 t ha-1) substrate are mixed well and ap-

plied in respective pots. An earthen pot with a diameter of 12 

inches and a height of 23 cm was used in the experiment. The 

soil was collected from the nearby agriculture land used for pro-

duction of vegetables like chilies, brinjal etc. and unwanted for-

eign materials like weeds, roots, and pebbles were removed and 

4 kg of soil was filled in each treatment pot. Each pot was filled 

with pebbles at the bottom to support the aeration.  Kidney 

bean (ITALY-38) seeds were soaked overnight in water and the 

next morning, two seeds were sown 3-4 cm below the soil  

surface in each pot. After sowing, light irrigation was provided 

uniformly to all the pots using watering canes. Each pot was 

irrigated on alternative days thereafter. After two weeks, the 

smaller and least robust plants were removed, leaving the 

healthier plants in each pot.  Staking was provided for the plant 

support in all the pots after 10 days of sowing. The manual 

weeding was carried out at an interval of 6 days. The diameter 

or girth of the plant stem, plant height, number of leaves was 

measured with the help of a vernier caliper at 10 DAS, 20 DAS, 

30 DAS up to 50 DAS. The total days for harvesting and number 

of fruits per pot was listed manually and average fruit weight 

was determined by calculating the average weight per pot. 

 

Statistical analysis 

Data management and analysis was performed in excel. One-

way linear ANOVA was performed for proximate analysis of 

biochar and to assess the effect of biochar treatments on plant 

growth parameters and yield using GenStat Version 15.0.  

Tukey’s HSD (honest significant difference) test was performed 

at a 5% level of significance to compare the mean between  

different treatments. The difference between the treatments 

was significant at p < 0.05 unless stated otherwise.  

 

RESULTS AND DISCUSSION 

 

Biochar yield and proximate analysis 

The biochar yield and results from proximate analysis, including 

moisture, ash, volatile matter, and carbon content are presented 

in Table 1. Biochar yield was observed highest at the lower  

pyrolysis temperatures of 200 °C, achieving 40% for rice husk 

and 38.4% for sawdust (Table 1). The highest yield was observed 

for RH200, followed by RH400 and SD200. Our findings 
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showed that biochar yield was higher for rice husk compared to 

saw dust, aligning with Jindo et al. (2014) who reported a 34% 

yield for rice husk biochar and Rutherford et al. (2012) who  

observed yields of 20-28% for saw dust biochar. At pyrolysis 

temperatures of 400°C and 600°C, the average biochar yield 

was 25.2%, illustrating a 34% reduction compared to the 38.4% 

yield at 200 °C for saw dust. Biochar yield is significantly influ-

enced by pyrolysis temperature, with higher yields achieved at 

lower temperatures and vice versa (Cornelissen et al., 2016; 

Song & Guo, 2012). This aligns with our findings, where the high-

est biochar yield was obtained at a lower pyrolysis temperature 

(200 °C) for both rice husk (40%) and saw dust (38.4%) biochar, 

followed by yields at 400 °C and 600 °C (Table 1). The highest 

moisture content (4.04%) was found in SD400 among all bio-

chars. At low pyrolysis temperature, minimal thermal decompo-

sition occurs, resulting in a larger portion of the feedstock re-

maining as solid carbon (Cornelissen et al., 2016). Conversely, at 

medium and high temperatures, most of the feedstock is con-

verted into liquid and gases, leaving less solid carbon (Chen  

et al., 2015; Cornelissen et al., 2016; Crombie et al., 2013). No 

significant differences in moisture content were observed 

among the other biochars, with values ranging from 0.83% to 

2.16%. Saw dust biochar exhibited significantly higher volatile 

matter, ranging from 92% to 95%, compared to rice husk  

biochar, which ranged from 60% to 63% across all three pyroly-

sis temperatures (Table 1). High volatile-matter content was 

observed in saw dust biochars at relatively low temperatures 

due to the presence of lignin in woody feedstocks, which partial-

ly resists pyrolytic decomposition at 400 °C, but not at higher 

temperatures (above 950 °C, used for ash content analysis). In a 

study by (Jindo et al., 2014), sawdust biochar (SD) showed a 

more significant changes in volatile content from 200 to 800 °C 

compared to rice husk biochar (RH). In contrast, rice husk  

biochars showed high ash content at all temperature levels,  

possibly due to interactions between organic and inorganic  

constituents during pyrolysis, resulting in ash content exceeding 

20 % (Jindo et al., 2014; Rutherford et al., 2012). The fixed  

carbon content was highest at 400 °C for both rice husk and saw 

dust biochars. 

According to Dume et al. (2015), biochar with ash content great-

er than 35% will have a fixed carbon content below 30%, which 

aligns with our findings  (Table 1). In proximate analysis by 

(Ronsse et al., 2013), it was found that fixed carbon content in 

biochar samples strongly depends on the intensity of the ther-

mal treatment, justifying the highest carbon content in RH400 

and SD400. The moisture contents of input materials were 

Purnika Aryal et al. /Arch. Agric. Environ. Sci., 9(4): 667-675 (2024) 

Figure 2. Effect of treatments on plant height (a), stem girth (b) and leaves 
number (c) measured at 10 days interval until 50 DAS.  

Figure 1. FTIR spectra of biochar formed with sawdust (a) and rice husk (b). 

Table 1. Yield and proximate analysis of biochar produced from saw dust and rice husk at three pyrolysis temperatures.  

Source Yield (%) Moisture content Ash content Volatile matter content Fixed carbon content 

RH200 40 1.82 ± 1.84a 32.50 ± 4.72a 62.45 ± 5.58a 3.24 

RH400 39.2 0.83 ± 0.94a 35.32 ± 4.45a 60.43 ± 4.36a 3.42 

RH600 37.2 2.14 ± 0.23a 33.99 ± 9.45a 63.19 ± 3.08a 2.86 

SD200 38.4 1.59 ± 0.72a 4.15 ± 0.16b 95.2 ± 2.47b 1.21 

SD400 26 4.04 ± 0.77b 6.18 ± 0.13c 86.02 ±7.33b 4.32 

SD600 24.4 2.16 ± 0.79a 7.25 ± 1.48c 92.49 ± 5.79b 1.11 

Letters in the table denotes significant difference between the treatments at 5% probability level (post hoc Tukey test, p < 0.05). 
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found to be 5.84%, 7.99%, 31.64%, and 5.32 wt.% for wood, 

straw, green waste, and algae, respectively, (Ronsse et al., 2013) 

and corroborated by our findings (Table 1). The relative ash con-

tent of biochar samples significantly increased with higher py-

rolysis severity, as expected, because ash remains in the solid 

fraction while organic matter undergoes thermal decomposi-

tion, resulting in weight loss in the carbon-containing frac-

tion. Moreover, temperature influences ash composition, with 

higher pyrolysis  temperatures leading to increased ash content 

due to volatile matter release (Dume et al., 2015).  

 

FT-IR 

FTIR spectra of biochar produced from rice husk and saw dust at 

three different pyrolysis temperatures are presented in Figure 

1. In the higher temperature range of 600 °C, the spectra shows 

a continuous loss of aromatic groups (Liu et al., 2015), as illus-

trated in Figure 1 (a and b).  Figure 1 (a) showed significant 

changes in chemical and structural compositions of biochar as 

the temperature increases. Similarly, Figure 1 (b) indicates that 

the chemical and structural compositions vary with increasing 

temperature. Furthermore, as the pyrolysis temperature in-

creases from 200 to 600 °C, there is a noticeable decrease in 

several characteristic bands (Figure 1a). At the higher tempera-

ture of 600 °C, the spectra showed a continuous loss of triple 

bonds and various compounds. The material at this temperature 

contained ketones-related components and no double or triple 

bonds. The minimal presence of functional groups in the biochar 

prepared at 600°C suggests that bonds are breaking as the tem-

perature rises. The spectra in Figure 1(a and b) clearly show the 

presence of the aldehyde groups, oxygen-related groups 

(phenol), and aromatic rings (Nandiyanto et al., 2019). As the 

heating temperature increases to 350°C, the breaking of C=O 

bonds may also increase (Armynah et al., 2018), as observed in 

Figure 1a and b.  

 

Effect on plant growth and yield parameters 

Biochar produced from both saw dust and rice husk at 200 °C, 

400 °C and 600 °C and mixed with organic manures showed 

beneficial effects on kidney beans production, including plant 

height, stem diameter, leaves number, fruit number and pod 

yield (Figures 1-3). No significant differences were observed in 

kidney bean production between rice husk biochar produced at 

three different temperatures (Figure 3). A similar trend was 

observed for saw dust biochar. This is in line with the study by  

Pandit et al. (2017), where biochar produced from slow and fast 

pyrolysis temperatures (ranging from 250 to 700 °C) using sev-

en different kiln types from Eupatorium adeophorum (locally 

named “banmara”) feedstock did not show significant variation 

in maize production in Nepal. Our experiment shows that 

SD400 resulted in the tallest plant, reaching 170 cm, compared 

to other treatments, which ranged from 118 to 155 cm. Similar-

ly, SD400 (24.2 mm) and SD600 (25 mm) had higher stem girth 

than other treatments, which ranged from 20 mm to 20.5 mm, 

and the highest number of leaves was observed at RH600 (53) 

indicates that the good quality biochar can be produced from 

rice husks and saw dust at pyrolysis temperature ranging from 

200 to 600 °C (Table 1) to achieve significant yield effects in 

kidney beans. Previous studies reported significant positive 

effects of biochar-based fertilizers produced from rice husk and 

saw dust in improving crop growth parameters such as plant 

height (Syahrinudin et al., 2019; Zhao et al., 2022), stem girth 

(Acharya et al., 2023; Rahayu et al., 2022), leaf number (Akhtar 

et al., 2014), which aligns with our findings (Figures 2 and 3).  

At slow pyrolysis temperatures (200 to 400 °C), biochar retains 

more volatile compounds and oxygen containing functional 

groups such as hydroxyl, carboxyl, carbonyl etc., and less stable 

carbon, enhancing microbial activity and nutrient availability 

(Bruun et al., 2012; Song & Guo, 2012; Tomczyk et al., 2020). 

These oxygenated functional groups enhance cation exchange 

capacity (CEC) and nutrient retention, thereby improving soil 

fertility and crop yields. In our study, as the pyrolysis tempera-

ture increased to 600 °C, there was a continuous loss of aro-

matic rings and a decline in oxygen containing functional groups 

(Figure 1).  

Consequently, the biochar became more hydrophobic and became 

less reactive due to the reduction of these functional groups. At 

higher pyrolysis temperature, biochar exhibits highly hydrophobic 

in nature with more stable carbon, greater surface area and in-

creased porosity, providing  habitat for microbes and enhancing 

microbial activity (Tomczyk et al., 2020). The hydrophobic nature of 

biochar induces water repellency, reduce waterlogging and nutri-

ent leaching  (Adhikari et al., 2022), thereby making these nutrients 

available to the plants.  Rice husk biochar can release significant 

amount of silica, which synergistically enhances the uptake of other 

Figure 3. Effect of saw dust and rice husk biochar produced at three pyrolysis temperature on average fruit pod yield (a) and pod number (b); Different letters 
inside the graph denote significant differences between the treatments at 5% probability level (post hoc Tukey test, p < 0.05). 



672 

 

Purnika Aryal et al. /Arch. Agric. Environ. Sci., 9(4): 667-675 (2024) 

essential nutrients such as phosphorus, potassium and calcium, ben-

efitting the crop growth and development (Zhang et al., 2017; Zhu  

et al., 2004). Moreover, Ndor et al. (2016) found that biochar pro-

duced from saw dust and rice husk enhanced the uptake of  N, P and 

K in maize, which in turn, significantly increased crop height, leaf 

area and biomass. 

In our study, biochar produced at 200, 400 and 600°C from saw 

dust increased kidney bean yield by an average of 28.6% and 

from rice husk by an average of 19.1% compared to the control 

(Figure 1a). The treatment that resulted in the quickest first har-

vest was SD200 (45 d) followed by RH600 (46 d) and RH400 (48 

d) (data not shown). These treatments showed significant differ-

ences compared to the control. The maximum harvesting period 

observed during research was observed in RH600 (19.33 d) fol-

lowed by SD400 (16 d), and SD200(16 d). Average pod weight 

was significantly higher in all the biochar treatments compared 

to the control (Figure 3a). The treatments SD200, SD400, 

SD600, RH200, RH400 and RH600 increased pod weight by 

23.5%, 34.9%, 27.10%, 16.15%, 19.94% and 16.93% respectively, 

compared to the control (Figure 3a). SD400 had the highest aver-

age pod weight among all treatments. Previous studies have doc-

umented positive yield effects of biochar produced from both 

slow and fast pyrolysis temperature ranging from 200 to above 

700 °C (Azeem et al., 2019; Farhangi-Abriz et al., 2021; Pandit  

et al., 2017; Schmidt et al., 2015). In accordance with this, Azeem 

et al. (2019) reported an increase in mash bean biomass and grain 

yield by 24% and 7%, respectively, upon biochar addition  

produced at 350 °C pyrolysis temperature. Similarly, biochar 

produced at a pyrolysis temperature from 550-700 °C and mixed 

with organic fertilizers increased radish yield by 320 % (Dahal  

et al., 2021) and pumpkin yield by 300% (Schmidt et al., 2015) com-

pared to the control. These results suggest that crop yield can be 

improved across a wide range of pyrolysis temperatures, which 

have varied physiochemical characteristics influencing crop growth 

parameters and yields. However, previous studies have highlighted 

that the yield effect is much stronger with biochar produced at 

slow pyrolysis temperature below 550 °C (Farhangi-Abriz et al., 

2021; Li et al., 2019), which aligns with our study where biochar 

from saw dust produced at 400 °C (SD400) stood out and pro-

duced the highest kidney bean production (Figure 3). 

When mixed with organic manures, biochar forms an organic 

coating on its surface,  allowing nutrient adsorption and reten-

tion in its pores and nano pores for prolonged period (Hagemann 

et al., 2017; Joseph et al., 2018) and acting as a slow-release 

mechanism for nutrients (Schmidt et al., 2015). Akhtar et al. 

(2014) reported enhanced plant growth by improving nutrient 

retention capacity and supplying nutrients as and when required 

by the crops. Moreover, Kammann et al. (2015) reported in-

creased nutrient retention, supply and uptake of nitrate and 

phosphate in biochar-based organic fertilizers, which correlated 

with crop production. The slow-release mechanism ensures 

plants have a steady supply of essential nutrients during critical 

crop growth periods, enabling synchrony between soil nutrient 

supply and plant demand, leading to improved crop growth and 

higher yields. Microbial activity and nutrient release were  

significantly higher during the grain-filling period in biochar-

treated treatments compared to control (Ali et al., 2020).  

Moreover, the slow release of nutrients improves nutrient use 

efficiency and reduces nutrient losses to the environment 

through leaching and emissions of greenhouse gases (N2O and 

NO), contributing to mitigating environmental pollution and 

climate change (Zhang et al., 2015).      

Applying biochar improves soil physicochemical properties such as 

pH, soil structure and porosity, creating an enabling environment 

for increasing microbial biomass and promoting the symbiotic rela-

tionship between legumes and nitrogen fixing bacteria, supplying 

more nitrogen in the soil for plant uptake, thereby increasing crop 

production (Rondon et al., 2007; Steiner et al., 2007; Van Zwieten  

et al., 2010). Biochar addition increased nodulation, microbial and 

nitrogenase activity, nitrogen fixation and plant N content (Rondon 

et al., 2007). Biochar application improved fresh and dry biomass 

yields of cowpea and sesbania, which belong to Leguminosae fami-

ly, compared to non-biochar plots (Jalal et al., 2018). This can be 

correlated with our study where the mutual effect between bio-

char and legumes could have made more N available, increasing the 

kidney bean yields.    

 

Conclusion 

 

Biochar produced from different sources at varying temperatures 

showed significant differences in yield, chemical composition, and 

impacts on plant growth. Our study found that adding biochar at all 

three pyrolysis temperatures enhanced plant growth and fruit 

yields, with sawdust biochar produced at 400°C showing the most 

positive agronomic effects. These findings suggest that high-quality 

biochar can be produced from sawdust and rice husks, making it a 

viable option for agricultural use. Our results indicated that kidney 

beans treated with biochar outperformed the control, suggesting 

potential benefits for other crops as well. However, further re-

search is needed to evaluate its effectiveness across diverse  

agro-ecological zones, soil types, and crops. Farmers can utilize 

crop residues and other organic waste materials to produce bio-

char and apply them in agricultural field to improve soil physico-

chemical and biological properties (microbial activity) thereby en-

hancing the crop productivity. Biochar can reduce the need for 

fertilizer inputs, enabling farmers to potentially reduce fertilizer 

costs while improving crop yields, leading to better economic bene-

fits with minimal environmental impact. 
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