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 Urban areas are expanding globally at the expense of natural productive land which affects the 

quality of life of urban residents. Hetauda sub-metropolitan city of Nepal has been undergoing 

rapid urban growth for the last few decades causing local climatic effects such as land surface 

temperature (LST) variation. Thus, exploring spatio-temporal changes in land use, land cover 

(LULC), and urban heat island (UHI) analysis could be an effective means of exposing local en-

vironmental issues caused by anthropogenic activities. Development in thermal Remote Sens-

ing and Geographic Information System (GIS) has enabled the monitoring of spatial LST, UHI, 

and its correlation to LULC. We used Landsat 8 OLI/TIRS satellite data and a supervised classi-

fication algorithm for land use land classification for the years 1995, 2008, and 2018 in Arc 

map software. The spatial pattern of LST was obtained through mathematical calculation of 

the thermal band of Landsat images. Correlation analysis was applied to explore the relation-

ship between LST, LULC types, and LUCL indices. The LST was higher for urban/built-up and 

cultivated land use types. There was approximately 4°C mean LST variation for all three years 

of study.  The regression analysis showed a positive correlation of urban/built-up with the 

Normal Difference Built-Up Index (NDBI) however a negative correlation with the Normal 

Difference Vegetation Index (NDVI) which implies that green structure weakens the UHI  

effects while urban/built-up areas strengthen the UHI. Overall, the study can be useful for 

urban planners in sustainable urban planning and management as well as to raise public 

awareness of climate change and the warming effect. 
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INTRODUCTION   

 

Urban Heat Island (UHI) is the result of a combination of factors, 

including a higher proportion of absorbed radiation from the sun 

than latent heat forms, a greater capture of infrared radiation 

within roadway canyons, a greater absorption and slower emis-

sion of thermal energy from constructed structures, and more 

release of latent heat from burning fuels for processing in facto-

ries, urban transportation, and residential heating systems 

(Stewart & Oke, 2012). UHI is a geographical area that is warm-

er than its surroundings due to the earth's surface features and 

was first used by Howard in 1833 (Laosuwan & Sangpradit, 

2012; Nuruzzaman, 2015). The spatial variation of landscape 

cover causes variation in Land Surface Temperature (LST) with 

the surrounding area of the impervious zone thus resulting in 

the formation of UHI (Ranagalage et al., 2017; Singh et al., 2017). 

UHI appears based on LST as governed by surface heat fluxes 

and impervious objects. Spatial LST is the first step of UHI analy-

sis (Singh et al., 2017). According to Hokao et al., 2012, LST  

corresponds to the outermost temperature at the land surface, 
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which is different from the surface air temperature. Since the 

pre-industrial era (1850-1900), the LST of air has been elevated 

globally by 1.53 °C (Shukla et al., 2019). Due to the reduction of 

green space, diminishing water bodies, decreasing agriculture, 

and increasing impermeable surface, the temperature disparity 

between urban and rural environments has increased 

(Ranagalage et al., 2018; Sharma et al., 2015). Anthropogenic 

pressure resulting in rapid change in land cover in recent times 

and changing landscape patterns affects LST at the local level 

(Ghosh & Porchelvan, 2018). 

Land use land cover change (LULC) dynamics play a crucial role in 

climate change at global and local levels (Tafesse & Suryabhagavan, 

2019) LULC knowledge is crucial for understanding urban  

dynamics, including geology, topology, ecology, and sustainability, 

as well as land use patterns, urban density, urban diversification, 

and the phenomenon of UHI (Li et al., 2018). LULC indices i.e. 

NDVI (Normal Difference Vegetation Index) for vegetation 

(West et al., 2018), NDBI (Normal Difference Built-Up  

Index) for the built-up area (Bhatti & Tripathi, 2014; Zha et al., 

2003), and NDWI (Normal Difference Water Index) for water 

content area (Gao, 1995) are the best methods for extraction of 

LULC characteristics. Many scientific researches on urban heat 

effects have shown a strong connection between environmental 

variables and UHI (Clinton & Gong, 2013; Grigoraș & Urițescu, 

2019). Remote sensing and geographical information systems 

(GIS) have emerged as essential tools in monitoring and analyz-

ing urban LULC changes and their effects on LST. These technol-

ogies facilitate a comprehensive assessment of urban growth 

patterns and their environmental consequences (Tali et al., 

2013). For instance, the integration of remote sensing data  

allows for the evaluation of LST variations over time, enabling 

researchers to examine the links between land cover types and 

surface temperature (Jiang et al., 2010; Sahana et al., 2016). As 

remote sensing technology is quick, reliable, and cost-effective, 

scientific methods for land cover change and UHI analysis are 

very useful in developing countries like Nepal.   

Nepal is a developing country and is considered as the fastest 

urbanization country in South Asia (Muzzini & Aparicio, 2013). 

Assessments of expanding urban history in Nepal since the late 

1950s (Thapa & Murayama, 2009) revealed that city areas have 

grown swiftly. Hetauda sub-metropolitan city is one of the larg-

est cities in Nepal constituting a population of 195,951 in 2021 

(CBS, 2021). The city's development accelerated after it was 

named the district's capital in 1982. While the urbanization and 

LULC change processes in some cities of Nepal have already 

been studied, however,  didn't include the Hetauda sub-

metropolitan city (Rimal et al., 2018). Since the city has grown 

plant species on both sides of the roads, it is additionally recog-

nized as a "Green City" and is host to Nepal's greatest industrial 

area. However, LULC's contribution to the amplification of LST 

of the Hetauda sub-metropolitan city is still unknown due to the 

absence of research. Hence, this research aims to analyze the 

spatio-temporal changes of LULC and the associated UHI effect 

in Hetauda Sub-Metropolitan City by employing remote sensing 

and GIS technologies. By providing insights into the dynamics of 

urbanization and its climatic implications, this study aims to  

inform urban planning and management strategies that promote 

sustainable development in the region. 

 

MATERIALS AND METHODS 

 

Study area 

The study area was the Hetauda sub-metropolitan city,  

Makawanpur district, Province No. 3, Nepal with an area of 

261.65 km2.  It is located 345 meters above sea level at a latitude 

and longitude of 27°25' N and 85°02' E, respectively. Hetauda 

experiences tropical and subtropical weather, with warmer  

summers and colder winters. In the months of June through July 

and August, Hetauda has significant rainfall (Bhuyan et al., 

2013). The forest cover of Hetauda is 48.28 % (DFRS, 2015). 

About 153,875 people were living there as per the 2011 Nepal 

census (CBS, 2011). One of Nepal's largest industrial areas is the  

Hetauda Industrial District (HID), which is home to big, small to 

medium-sized and cottage industries. 

  

Data used 

Landsat satellite data from the Landsat 5 Thematic Mapper (TM) 

and Landsat 8 Operational Land Imager (OLI), obtained on April 

7, 1995, April 10, 2008, and April 22, 2018, respectively, were 

used in this study. These Landsat data are accessible at no 

charge through the USGS portal and enhanced by NASA to pro-

duce Level-1 deliverables that have radiometric calibration and 

atmospheric correction methods (http://earthexplorer.usgs.gov/). 

Satellite photos were used from the summer months of April for 

1995, 2008, and 2018 to ensure better comparability of surface 

temperature and the UHI effect. Due to their high geographical, 

spectral, and temporal precision, LANDSAT images are among 

the most frequently used satellite remote sensing data 

(Townshend, 2001). Shapefiles, which were provided by the  

Department of Survey, Hetauda, Makwanpur, were used to  

extract the area of interest in addition to the LANDSAT data. 

 

Software used 

ArcGIS was primarily used for the majority of spatial studies, 

including the identification of changes, urban expansion, LST 

measurement, and UHI evaluation. R programming was carried 

out for pixel value extraction which was used for correlation 

analysis. Google Earth was used to support the classification 

accuracy. Besides, MS Office packages, SPSS used for tabulation 

and visual representation of the results. 

Figure 1. Study area map. 

http://earthexplorer.usgs.gov/
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Data preparation 

Digitally unprocessed photographs typically have inaccuracies 

brought on by changes in height, the curvature of the earth, and 

air refraction. Although they were employed in this investigation, 

Level-1 Landsat standard products are free of errors from the 

abovementioned sources (http://earthexplorer.usgs.gov/).WGS 

1984 and UTM zone 45 N were used as the dataset's spatial  

reference systems. The necessary bands were combined with the  

entire image. Ultimately, the area of interest was extracted from 

Landsat photos by clipping them. 

 

Methods 

The many strategies used to achieve the aforementioned aim 

and objectives are condensed in this section. Concerning the 

application of a spatial-temporal land class change in our case, 

the UHI phenomenon approaches serve as excellent examples of 

the practical implications of GIS and remote sensing. Supervised 

maximum likelihood classification, change detection assess-

ment, UHI analysis, and their interactions are the main method-

ologies used in our study. 

 

Supervised maximum likelihood classification 

The study area was divided into various LULC groups using  

supervised maximum likelihood classification. By using training 

samples for this method, it was possible to distinguish the spec-

tral properties of the classes. This approach was greatly aided by 

knowledge in the relevant field. After gathering training sam-

ples, the Maximum Likelihood categorization algorithm was 

used to validate the categorization of the images. According to 

Tempfli et al. (2009), the approach assigns a cell to the class with 

the highest probability, where the probability value is the statis-

tical distance based on the clusters' mean values and covariance 

matrix (Tempfli et al., 2009). This categorization contains the five 

groups i.e.  Forest, Cultivated land, Urban/built-up, Sand, and 

Water. 

 

Accuracy assessment 

In general, classification-based LULC maps contain some  

mistakes as a result of a variety of circumstances, from the origi-

nal data-collecting process to the application of the classifica-

tion technique. Therefore, it is required to evaluate the accuracy 

of the categorization findings. The error matrix (confusion ma-

trix) is the approach that is most frequently used to assess accu-

racy.  An error matrix is a table with numbers in it that, when 

arranged in rows and columns, show the number of samples that 

were, concerning the truth, attributed to each classification. The 

LULC maps obtained via classification are represented in the 

matrix's rows, while the fieldwork-gathered reference data are 

shown in the matrix's columns. The kappa coefficient, error of 

omission and commission, and other statistical measures can be 

computed with the help of this matrix (Congalton, 2001). To 

obtain classification accuracy for this investigation, a confusion 

matrix was created. 

 

LST retrieval 

According to Rajeshwari & Mani (2014), LST is the temperature 

experienced when touching the ground with one's hands or the 

skin temperature of the ground. LST has been a major topic for 

creating approaches to be assessed from space since it is one of 

the most significant features of the land surface. LST is a signifi-

cant consideration in many scientific fields, including studies of 

the global climate, farming and hydrological phenomena, and 

land use and cover in cities. Since LST is a crucial element influ-

encing the majority of our planet's physical, chemical, and bio-

logical systems, it is necessary to calculate LST from remote 

sensed images (Rajeshwari & Mani, 2014). A series of steps are 

involved in LST retrieval (Table 1) (Haylemariyam, 2018): 

 

UHI 

According to  Kaplan et al. (2018) and  Ma et al. (2010), the UHI 

was detected using the following method in this study: 

 

LST>m+0.5d Referred to UHI area 

LST>m+0.5d Denoted non-UHI or rural area 

 

Where 'm' and 'd' stand for the research area's mean and stand-

ard deviation of temperatures, respectively. 

 

LULC indices 

To evaluate the association between vegetation and built-up 

Table 1. LST retrieval steps. 

*L_λ=Spectral Radiance at the sensor's aperture in watts/(meter 
squared × ster × µm);LMINλ =the spectral radiance that is scaled to 
QCALMIN in watts/ (meter squared × ster × µm) LMAXλ =the spectral 
radiance that is scaled to QCALMAX in watts/(meter squared × ster × 
µm) QCALMIN =the minimum quantized calibrated pixel value 
(corresponding to LMINλ) in DN; QCALMAX =the maximum quantized 
calibrated pixel value (corresponding to LMAXλ) in DN; QCAL =the 
quantized calibrated pixel value in DN; ML=Band-specific multiplicative 
rescaling factor from the metadata (RADIANCE_MULT_BAND_x, where 
x is the band number), AL=Band-specific additive rescaling factor from 
the metadata (RADIANCE_ADD_BAND_x, where x is the band number), 
Qcal =Quantized and calibrated standard product pixel values (DN) and 
o_iis the correction for Band 10 (Barsi et al., 2014). T=Top of atmosphere 
brightness temperature (K), K_1=Band-specific thermal conversion 
constant from the metadata (K1_CONSTANT_BAND_x, where x is the 
thermal band number), K_2=Band-specific thermal conversion constant 
from the metadata (K2_CONSTANT_BAND_x, where x is the thermal 
band number, NDVI min=minimum value of NDVI, NDVI max=maximum 
value of NDVI, BT=at satellite temperature, w=wavelength of emitted 
radiance, h=plank’s constant (6.626 × 10-34 JS),  s=Boltzmann constant 
(1.38 × 10-23 J/K), c=velocity of light (2.998 × 10-8 m/s and p=14380. 
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area with LST, the NDVI and NDBI indices were calculated. 

Based on the following expressions, these indices were derived 

from the satellite images: 

 

 

 

 

 

Red, Near Infrared, and Mid-Infrared bands, respectively, are 

denoted by R, NIR, and MIR. 

 

Relationship between vegetation indices and built-up index 

with LST 

The relationship is based on pixel-based values of indices with 

the pixel value of LST. For this sixteen thousand nineteen pixel 

values were selected systematically having a confidence level of 

99% for each land class indices for each study area to cover the 

whole area spatially. Thus correlation value was here calculated 

for vegetation indices and built-up area indices with LST. 

 

RESULTS AND DISCUSSION 

 

Accuracy assessment 

The user, producer, and overall accuracy were obtained for 

1995, 2008, and 2018. On this note, the overall classification 

accuracy in 1995, 2008, and 2018 was at 94.26%, 92.25%, and 

92.91%, respectively. Besides kappa coefficients were 0.93, 

0.95, and 0.91 for 1995, 2008, and 2018, respectively.  

 

LULC 

The findings of this study showed that Landsat satellite imagery 

is an excellent remote sensing technique for detecting LULC 

change and estimating the impact of UHI in both time and space 

(Singh et al., 2017). The study elucidated that the way land was 

being used can directly affect how much heat is released. Also, 

forest cover gained slightly within 23 year period (1995-2008) 

i.e. 2.19 km2 increased in the first interval (1995-2008) and 0.48 

km2 increased in the second interval (2008-2018). This study 

demonstrated that there had been a significant shift in the land 

use in the Hetauda sub-metropolitan city over the past 23 years 

(from 1995 to 2018), with the widespread growth of industrial 

land at the expense of agricultural land and to a lesser extent 

vegetation land due to heavy urbanization. The study area com-

prises 38 community forests (among them 36 established in the 

1990s), which play a major role in forest restoration and could 

contribute to raising the forest cover in the study site (Division 

Forest Office, Hetauda). The forest cover increment in the study 

area is consistent with the national-level forest cover increment 

in the country (DFRS, 2015). Contrary, cultivated land de-

creased continuously within the study period by 7.38 km2 in 

1995-2008 and by 4.18 km2 in 2008-2018 periods (Figure 1) 

due to the conversion of those lands into built-up areas for a 

growing population. The urban/built-up area rose by 8.64 km2 

between 1995 and 2008, and 6.26 km2 between 2008 and 2018 

(Figure 1). This might be due to the consequence of population 

growth (www.citypopulation.de.) in the study area.  Visual 

presentation of LULC map of Hetauda city for three years 1995

(A), 2008(B) and 2018(C) can be visualized (Figure 2). Statistical-

ly urban/built-up area increased by 8.64 km2 in the first study 

period (1995-2008) and by 6.26 km2 in the second study  

interval (2008-2018).  

Bikram Singh et al. /Arch. Agric. Environ. Sci., 9(4): 691-698 (2024) 

Figure 2. Land use land cover map. 

Figure 3. Spatial LST map for 1995, 2008, and 2018. 

Figure 4. UHI and non-UHI for 1995, 2008 and 2018m. 

file:///C:/Users/dell/Desktop/www.citypopulation.de
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LST Distribution map and UHI formation 

The spatio-temporal map of LST is mapped for each year i.e. 

1995, 2008, and 2018 (Figure 3), and mean LST was determined. 

The lower limit, upper limit, and mean LST for three periods 

(1995-2008, 2008-2018, and 1995-2018) were estimated. 

Hence mean LST difference for the years 1995 and 2008  

decreased by 0.123ºC and increased by 1.152 ºC for the latter 

period of 2008-2018 and increased for the 1995-2018 year 

period. The mean LST was increased by 1.029ºC between 1990-

2018. Furthermore, a lower range of LST increased by 4.188ºC 

whereas the upper range by approximately half of the lower 

ranges i.e., 2.961ºC (Table 3). The LST distribution is more at the 

industrial zone, main downtown, and agriculture fallow land but 

forest land cover possesses less LST as compared to other clas-

ses (Figure 3). The LST distribution was more in the industrial 

zone, main downtown, and agriculture fallow land (Figure 3) but 

forest land cover possesses less LST as compared to other clas-

ses (Sarif et al., 2020).  The rate of increment of LST per decade 

(Sarif et al., 2020) is quite similar to our findings of LST of 1995 

and 2018 (Table 3). The UHI becomes more pronounced and the 

temperature gaps between urban and rural areas get larger 

(Heinl et al., 2015). The UHI of Hetauda sub-metropolitan city 

was found to be much warmer than the nearby rural areas; as 

urbanization increased (Table 3). The UHI and no-UHI of Hetau-

da City were identified based on LST distribution (Figure 4) for 

each study year 1995, 2008, and 2018 (Figure 6). Thus, the UHI 

area in 1995, 2008, and 2018 was 83.78 km2, 88.97 km2, and 

80.52 km2 respectively. The mean LST for UHI for each year 

1995, 2008, and 2018 varied i.e. 33.18ºC to 32.78ºC between 

1995-2008 and 32.78ºC  to 34.48ºC between 2008-2018 (Table 

2). Similarly, mean LST for Non-UHI was 28.55 ºC, 28.43 ºC, and  

29.54 ºC for each year 1995, 2008, and 2018 respectively (Table 

2). Interestingly, the mean LST of UHI and Non-UHI found a 

significant difference i.e. about 4ºC for each year (Table 2) which 

is called the UHI effect. From the visual analysis of the map, UHI 

was also mainly concentrated in an industrial area, the main 

downtown, and agriculture fallow land (Figure 4). The output of 

this study is in line with research conducted by Li et al. (2020) in 

Hefei, China, that the expansion of UHI is directly proportional 

to LST and rapid urban growth i.e. unmanaged LULC dynamics. 

The UHI effect was realized by 4°C LST different for urban and 

peri-urban areas (Table 2). Hence the proper proportion of land 

use system should exist in metropolitan cities for sustaining 

cities and maintaining UHI adverse effects. 

The UHI area in 2018 decreased to 80.52 km2 (Table 6) from 

88.97 km2 in 2008 with the gradual increment of forest cover in 

23 years (Figure 2) due to green vegetation, lowers LST which is 

beneficial to minimize UHI effects in urban areas (Rousta et al., 

2018). These findings imply that UHI has become more severe 

at all times as a result of the rise in industrial land at the expense 

of vegetation land and agricultural land which is expected to 

have detrimental effects on the local ecosystem. The detri-

mental consequences of stressors like climate change can be 

mitigated by using sustainable land management techniques 

(Ghosh & Porchelvan, 2018). Consequently, new greening 

measures must be devised, and lowering runoff including in-

creasing the accessibility of freshwater by constructing lakes 

and ponds and harvesting rainwater. Such constructions can 

increase the adaptability of nearby environments (Santos & 

Gerry, 2017). Additional pressure on public or private authori-

ties at the local and national levels to abate the UHI phenome-

non from the implementation of measures to lessen its effects 

as well as enhancing the long-term sustainable strategy for 

emerging urban places may result from widespread knowledge 

of the severe effects of the UHI phenomenon (Rousta et al., 

2018).  

 

Figure 5. Scatter plot of LST with NDVI and NDBI. 

Figure 6. NDVI and NDBI spatial pattern map for 1995, 2008 and 2018. 

Figure 7. Correlation of LST with NDVI and NDBI. 
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LST and its relationship with LULC 

The linkage between LULC and surface temperature indicators 

has been the subject of prior studies (Agam et al., 2007; Agrawal 

et al., 2008; Fernández et al., 1997; W. Li et al., 2015; Wu, 2004). 

For various land class features, the connection between LST and 

LULC indices can vary (Tariq et al., 2020). Forest had mean LST in 

1995 was 28.425ºC, decreased to 28.241 ºC in 2008, and even-

tually increased to 29.16 ºC in 2018 (Table 3). The mean LST of 

cultivated land in 1995 was 32.513 ºC, decreased to 32.416 ºC in 

2008, and finally increased to 34.500 ºC in 2018. This showcases 

that agricultural land and forests experienced an increment in 

mean LST variations from 1995 to 2018. Variations in forest 

cover/density are related to variations in LST (Xu et al., 2011). 

The mean LST of urban/built-up area increased i.e. from 30.129 

ºC in 1995, 30.765 ºC in 2008, and 31.700 ºC in 2018. Similar 

mean LST variations between urban/built-up areas and forests 

were discovered in the years 1995, 2008, and 2019. It was prob-

ably brought on by the influx of numerous residential communi-

ties, business growth, and adjacent districts throughout the year 

in the study site. The mean LST of the forest class increased by 

0.735°C over the 23 years (1995-2018) period, cultivated land 

increased by 1.987°C, and urban/built-up area increased by 1.571°

C which accorded with the findings of Xiong et al. (2012), who 

found that extreme temperatures variations are strongly correlat-

ed with developed land, densely populated areas, and heavily  

industrialized areas. It has been established that each land class 

has a different shift in mean LST. The mean LST change for forests 

throughout the 23-year (Table 3) has been lower than for other 

classes (Tariq et al., 2020). It has been clear that the change in 

mean LST is varied for each land class. The mean LST change in the 

23 years (1995-2018) for the forest is lower than for other classes. 

Furthermore, the cross-comparison of mean LST for each land 

class was determined. Thus there was a mean LST variation of 

4.008ºC, 4.174ºC, and 5.34ºC cultivated land and forest in 1995, 

2008, and 2018 respectively. Similarly mean LST variation  

between urban/built-up areas and forest was found at 1.704ºC, 

2.524ºC, and 2.54ºC in 1995, 2008, and 2019 years, respectively. 

 

NDVI and NDBI pattern and its relation with LST 

The correlation between LST and NDVI  was negative while 

NDBI was found positive for three study years (Figure 5). The 

correlation coefficient between LST and NDVI was found -

0.479, -0.655, and -0.639 in 1995, 2008, and 2018, respectively 

(Figure 7). The correlation coefficient of LST between NDBI was 

found 0.779, 0.436, and 0.775 in 1995, 2008, and 2018, respec-

tively (Figure 7). The study carried out in Tehran city of Iran 

found that negative correlation between LST with NDVI and a 

positive correlation with NDBI (Haylemariyam, 2018; Jamei  

et al., 2019; Rousta et al., 2018) which is similar to our result 

(Figure 7). The negative relationship between LST and NDVI 

indicates the green vegetation cover lowers the warming effect 

while the positive relation between LST and NDBI indicates the 

built-up area raises the local warming effect. Compared to for-

est land and water bodies, other land use had a high surface 

temperature (Table 3) because other land use such as built-up 

area, and bare and cultivated land promotes the surface tem-

perature and makes the surroundings warm (Rousta et al., 

2018). Increased development activities in one location have led 

to the loss of potential natural places, which makes climate 

change actions even more dangerous (Gillespie et al., 2018). The 

mean NDVI value increased during the study period i.e.  0.116 in 

1995, 0.194 in 2008, and 0.242 in 2018 (Table 4). The mean NDBI 

increased in the period (1995-2008) from 0.247 to 0.377 while 

decreased in the later interval (2008-2018)  i.e. -0.041 in 2018. 

The spatial map of NDVI and NDBI was prepared for three stud-

ied years i.e. 1995, 2008, and 2018 (Figure 6). It is possible to 

discover areas of degradation of land and restoration using NDVI 

demonstrations for time series analysis (Eckert et al., 2015). A 

tried-and-true way to determine the NDVI of a certain location is 

to monitor the prolonged drought and gauge the condition of the 

greenery (Tariq et al., 2023). NDVI decreased while LST and NDBI 

both significantly increased in central urban areas (Figure 6).  

Table 2. UHI and Non-UHIs statistics. 

In 1995 In 2008 In 2018 
    

Mean LST 
Area 

(sq. km) 
Mean LST 

Area 
(sq. km) 

Mean 
LST 

Area 
(sq. km) 

UHI 33.18 83.78 32.78 88.97 34.48 80.52 
Non UHI 28.55 177.22 28.43 172.68 29.54 181.13 
UHI intensity 4.63 4.35   4.94 

Table 3. LST and its relationship with LULC. 

Land class LST_1995 LST_2008 LST_2018 

Forest 28.425 28.241 29.16 
Cultivated land 32.513 32.416 34.5 
Urban/built-up 30.129 30.765 31.7 
Sand/gravel 30.604 31.302 32.19 
Water 25.468 29.170 29.4 

Table 4. NDVI and NDBI statistic of years 1995, 2008, and 2018. 

S. No. Date 
Minimum Mean Maximum Standard deviation 

NDVI NDBI NDVI NDBI NDVI NDBI NDVI NDBI 

1 1995 April -0.232 -0.387 0.116 0.247 0.471 0.613 0.081 0.102 
2 2008 April -0.212 -0.309 0.194 0.377 0.495 0.549 0.092 0.067 
3 2018 April -0.074 -0.289 0.242 -0.041 0.472 0.266 0.072 0.089 
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Conclusion 

 

In the Hetauda sub-metropolitan city of Nepal, the study found a 

high rate of urban expansion i.e. 14.9 km2 of urban/built-up area 

was more in 2018 compared to 1990. There was the formation of 

UHI in the industrial area, downtown of Hetauda sub-

metropolitan city as well as bare cultivated land and its effect was 

about 4°C. The LST was higher for urban/built-up and cultivated 

land use types. Forest and agricultural land was in decreasing 

trend and converted into urban/built-up areas which again sup-

ports the expansion of the UHI. Altogether, the negative correla-

tion between LST and NDVI reveals that green vegetation lowers 

the LST in an urban area while the positive correlation between 

LST and NDBI implies that build-up area strengthens LST. Overall, 

the application of remote sensing and GIS is an effective cost-

effective tool for analyzing UHI which will be beneficial for urban 

planners for sustainable urban planning. 
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