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ABSTRACT

Plant health is cornerstone for agricultue productivity and food security. Severe impacts have
been observed in wheat crop including physiological, morphological and bio chemical
components as a result of water insufficiency. Seedling growth aspects such as seedling length,
length of primary roots, seedling dry weight, and germination percentage are also affected
whenever water scarcity prevails in the soil. Early flag leaf senescence decreased the grain

Keywords ) . . .
yield of wheat while a delay in flag leaf senescence enhanced the grain yield of wheat under

Abiotic stress drought stress. Physiological phenomena like chlorophyll content, photosynthesis rate, rate of

Abscisic acid .. . . o .
Morphology evapotranspiration, and relative water content in wheat are affected by water scarcity in soil.

S Proline content, osmotic adjustment, and abscisic acid accumulations are affected in periods
Osmotic adjustment

Reactive oxygen species of water deficit in wheat. Escape, avoidance, recovery, and tolerance meachanism appear in
the wheat crop to sort out drought stress. More effective and suitable drought-resistant
wheat cultivars producing through advanced techniques are pivotal to combat against drought

stress as well as for higher yield and sustainability purposes. In this paper we discussed the

causes, mechanism and management practices of drought stress in wheat.
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INTRODUCTION

Wheat (Triticum aestivum L.) is one of the world’s most important
cereal crops in the Poaceae family (Poudel et al., 2020). It is the
most planted crop globally occupying a total area of 216 million
hectares with an average yield in 2021-22 of 768.9 million
metric tons (Dhakal et al., 2021). In Nepal, Wheat is grown on a
total of 711,067 hectares and total production is 2,127,276
Metric tons in the year 2021/22 (Ministry of Agriculture and
Livestock Development, 2021). They are more appropriate than
maize as a source of energy when used in the concentrates, and
in addition to this, sunflowers can be used as a replacement for
the grain because they can supply more protein per unit of
weight than the grain or maize. Wheat is significant in the feed
and Livestock industry. Wheat straw could be used as a binder
to feed cows with developing diets that might allow
manufacturers to get the most from their better-quality feed

ingredients (Tufail et al, 2021). Due to the ever-increasing
world population, the desire for wheat in the world has risen;
therefore, it has been estimated that grain production in the
world should increase by 60 percent by 2050 to meet the
requirements of the world’s 9 billion population (Borisjuk etal.,
2019). All ecological pressures are unfavorable to wheat
development and its formation, of all loads, drought loading is
the most lethal to yield (Sattar et al., 2023). Drought therefore is
assumed to be the most abiotic stress factor that affects plant
growth and food production (Zhang et al., 2018). Wheat crop
water requirement is estimated to be 266.8-500 mm, which is
considerably higher than other crops like maize (Poudel et al.,
2020). The permanent wilting point of wheat is about -1.5 Mpa
or -15 bar/atmosphere. A permanent wilting point is a point at
which the crop plant has access to no water and displays wilting
or death signs and cannot be rehabilitated even with water.
Irrigation is only installed in 346,895 thousand hectares of the
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total land area, while the remaining area relies solely on rainfall.
Elevated atmospheric CO, level means a change in the climate
and also the pattern of rainfall and seasonal dry period (Zaheer
etal., 2021). The increase in the temperature of the earth is 0.06
°C every year while the average rainfall reduces to 16.09 mm
(Nyaupane et al., 2024). The future incidences of water stress
are very realistic because of changes in climate for the whole
world and the reduction of water availability for agricultural
purposes (Stevens & Madani, 2016). Climate change was
estimated to reduce global production of wheat by -=1.9% in mid
-century (Pequeno et al, 2021). Out of all the fresh water
available globally, about 70% of it goes to agricultural use hence
presenting an opportunity to have technologies that can help to
properly utilize this water (Zia et al., 2021). Growing drought-
tolerant wheat genotypes may be a sustainable option to
increase wheat productivity under drought-stress conditions
(Ahmad et al., 2022). In summary, the major goal of this study is
an approach that attempts to understand drought stress, the
morphological, biochemical, and physiologic impacts of drought
stress, different mechanisms of drought resistance observed,
and management strategies that can assist the plant breachers
in finding ways that can help to mitigate the effects of drought
stress on food crops and ensure food and nutritional security
around the world. Stress is classified into two classifications
biotic and abiotic and their main cause of minimizing yields.
Amelioration between abiotic and biotic stress enhances plant
performance by decreasing the probability of biotic stress from
diseases’ pathogens (Ben Rejeb et al., 2014).

ABIOTIC STRESS IN WHEAT

Abiotic stress includes extreme temperature stress, flooding
stress, salinity stress, metal stress, nutrient stress, and drought
stress (Zhang et al, 2023). High temperature, water stress,
deficiency, and toxicity of plant nutrients result in an overall
yield loss of (51-82)% of crop production across the world
(Teshome et al., 2020). Osmotic stress due to salinity can be
considered as one of the major abiotic stresses affecting crops
along with causing cellular dehydration, and the secondary
metabolites such as terpenoids, flavonoids, alkaloids, steroids,
and phenolic compounds are the defense mechanisms in plants
against salt stress (Jan et al., 2021). ‘Law of diminishing yield

Morphological change
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2. Growth stage changes
Plant height

Leaf length

Leaf senescence

Effect of
drought stress

increment’ postulates that if the specific nutrient is continuously
supplied, they have tendency to hold other nutrients and genetic
potentiality of successive crops in low vyield. Yield in crops is
lowered by such factors like physiological factors, toxicity, and
imbalance leading to over availability of any particular nutrient
inthe soil (Zhangetal., 2023).

Drought stress

Technically, drought stress can be described as a deficiency of
water that leads to phenomenal changes at market, biochemical,
physiological, and molecular levels (Sallam etal., 2019). It takes
place when the available soil moisture fails to meet the plant
requirement high
evapotranspiration, and low water capacity in the rhizosphere
zone (Mwamahonije et al., 2021). Meteorological drought deals
with the dryness of a particular place for a certain period of time

because of low precipitation,

depending on the region (Mwamahonje et al., 2021). The kind of
stress that develops when plants cannot effectively take water
from the soil although the soil has effective moisture is referred
to as pseudo drought stress or physiological drought stress
(Seleiman et al, 2021). Among the total districts affected by
droughts, 33% get a mean annual rainfall of less than 750 mm,
these areas are termed as ‘chronically drought-prone’ while 35%
get a mean annual rainfall of 750- 1125 mm and are termed as
‘drought-prone’ (Seleiman et al., 2021). Rising temperatures and
changes in precipitation patterns lead to increasing incidence
and intensity of drought events. climate change will increase the
frequency of droughts and floods, both of which will be
problematic for food production.

EFFECT OF DROUGHT STRESS ON WHEAT MORPHOLOGY

Figure 1 showing drought stress elicits morphological,
physiological, biochemical, cell, and molecular changes
altogether (llyas et al, 2021). Wheat seedling goes through
various developmental stages such as the germination phase,
seedling development phase, tillering phase, stem extension
phase, booting phase, heading phase, flowering phase, and grain
filling phase (Khadka et al., 2020). Among them, plants may be
drought-stressed at any developmental stage at different levels
of intensity (Sallam et al., 2019).
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Figure 1. Effect on wheat Morphology, physiology, and biochemistry (Source: Nyaupane et al., 2024).
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Seed germination and seedling growth stage

Seed germination begins with the intake of water by the seed
but when water is limited the seeds do not intake enough water
and thus affect the rate of germination as well as the population
density per unit area. In water-deficit conditions, seed
germination declines to 32.83-53.50% (Mahpara et al., 2022).
The extent by which morphological adaptation has occurred can
be grouped into two categories namely; shoot parts and root
parts. The shoot parts include changes in leaf shape, leaf
expansion, leaf size, leaf area, cuticle tolerance, leaf pubescence,
reduction in plant height, Leaf discoloration, and leaf
senescence, Whereas, the lower root parts include changes in
root dry weight, root density, and root length (Sahani et al.,
2021). When grown under drought conditions, the maximum
mean plant height achieved for the BL4335 genotype was 73.25
cm (Poudel et al., 2020). When water is scarce the leaves turn
yellow, this stalls the photosynthesis process and leads to the
last phase of a leaf's life, senescence (Sharma et al., 2022). Lack
of water reduces the intake of nitrogen by the crops, and hence
Nitrogen is remobilized from the leaves and stems to the seeds
leading to early loss of leaves (Hasanuzzaman et al., 2020). The
flag leaf is the main photosynthetic organ, meaning it is
responsible for providing the crop with the energy it requires to
go around the cycle (Nardino et al., 2022). In wheat, early flag
leaf senescence reduced the grain yield while delayed flag leaf
senescence increased the grain yield under drought stress
(Khadka et al., 2020). Damage to Photosystem Il occurs at the
early senescence stage which consequently alters the structure,
metabolism, and gene of the photosynthetic cell and reduces
cellular chlorophyll content (Khadka et al., 2020).

Tillering stage and flowering stage

It has an impact on different levels such as plant stand density in
the establishment phase, tiller population per plant in the
tillering phase, and plant height in the stretching phase. Drought
was found to decrease the wheat biomass the most by 34.4% at
the tillering stage (Bhandari et al., 2021). During the flowering
stage, the processes included in fertilization and grain fixation
are most influenced and the number of plantable seeds per unit
area reduces during droughts. Pollen sterility ranged from 1.1 to
9.1% under normal conditions and 5.7 to 11.7% under drought
stress conditions (Lonbani & Arzani, 2011).

Grain filling stage and its constituents

Thousand-grain weight, grain area, grain perimeter, grain length,
the length-to-width ratio of the grain, grain diameter, grain
roundness, grain color (Green and Blue), and awn length all
being higher order grain traits, are influenced by drought stress.
Both drought stress and nitrogen levels affected the grain
compositions containing the starch protein including gliadins
gluten and fibers (Rakszegi et al., 2019).

Grain weight and awn length
In the grain formation stage, the leaf's ability to utilize and
transport the assimilates to the grain is most disoriented and so

the grain weight is affected (Sarto et al, 2017). similarly,
maximum mean number of grains per spike of NL1244 was
greater 46 and minimum of NL1247 was 29.25 (Poudel et al.,
2020). At low water availability, ear biomass and spikelet
number decreased to a greater extent in the tetraploid and
hexaploid species of wheat compared to the diploid species
(Wang et al, 2017). The awn length can be measured with
reference to the spike tip or with reference to the longest awn.
Awns had a relatively higher relative water content and
photosynthetic electron transport rate under drought stress
than the flag leaf, showing their ability to survive in low soil
water levels (Khadka et al., 2020). It was also found that awn
length had a highly significant positive correlation with grain
yield (Khadka et al., 2020).

EFFECT ON WHEAT PHYSIOLOGY

It has been established that water deficit stress conditions elicit
some changes in the cell division pattern, chlorophyll factory,
rate of photosynthesis, rate of evapotranspiration, membranous
stability condition, relative water content, gamete formation,
fertilization, and temperature of canopy (llyas et al., 2021).

Evapotranspiration and photosynthetic rate

It also causes deactivation of gibberellin acid in guard cells
during the early stages of dry weather and interferes with
production of gibberellin acid in the leaves to control canopy
development and size of the transpiring surface (Shohat et al.,
2021). Maximum crop evapotranspiration occurs from heading
to flowering and that particular stage of the crop is most
sensitive to water deficits (Sarto et al., 2017). Soil drought
conditions lead to early stomata closure, which in turn reduces
the CO, diffusion rate, and accounts for turgor pressure, lower
activity of different photosynthetic enzymes, a reduction of
biochemical components, formation of triose-phosphate and
lowering down of photochemical efficiency of photosystem Il
(Pandey and Shukla, 2015). It affects the chlorophyll content
and is said to cause photoinhibition of the photosynthesis
process during a dry spell (Rijal et al., 2020). Because of the
changes in energy absorption, trapping, and electron transport,
the drought stress led to the impairment of the electron of
chlorophyll a transformation to the PSII reaction center, and
thus a decrease in the photosynthetic PSII efficiency (Faseela
etal., 2020).

Gametogenesis and fertilization

The reproductive organs exposed to drought stress represent
meiotic defects due to the morphological, structural, and
metabolic alterations that raise the chances of premature
gametes and reproductive sterility. Such stress also reduces the
water availability in plant reproductive organs such as style and
stigma as well as reduces pollen viability leading to poor
fertilization (Nyaupane et al., 2024).
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Canopy temperature

Canopy temperature has been a good measure of plant water
status as it can be used in order to estimate the changes in
stomatal conductance using a non-destructive technique that is
contactless. The difference in air temperature and canopy
temperature is called Canopy Temperature Depression. In
water-insufficient conditions, this leads to a reduction of water
transpiration accompanied by an increase in plant canopy or
surface temperature (Ahmed et al., 2020). Canopy temperature
can be obtained using an infra-red thermometer and this was
done within two hours of mid-day, and with sun angle directed
to the South (Tasmina et al., 2017).

EFFECTS ON WHEAT BIOCHEMISTRY

Proline content, antioxidant enzymes defense system, osmotic
adjustment, production, lipid peroxidation, photochemical
efficiency, ROS, chlorophyll content, cytokinin, ABA, cysteine
content, MDA, electrolyte leakages, membrane stability are
affected by water deficient (Sarto et al., 2017).

Membrane stability, electrolyte leakage, and malondialdehyde
content

Membrane stability and electrolyte leakage are inversely
related in that high electrolyte leakage is indicative of
low stability of the cellular membrane. The increases in
oxidative stress characterized by Malondialdehyde (MDA),
high electrolyte leakage, and a decline in membrane stability
are also noticed in water-inadequate situation (Ahmed et al.,
2019).

Proline content

Proline increases simultaneously with the formation of water
pressure and dissolves quickly after pressure is released due to
changes in cytosolic synthesis and mitochondrial breakdown
(Sharmaetal., 2022).

Reactive oxygen species

The oxygen molecule is the last acceptor protein in the series of
oxidation-reduction reactions of the electron transport chain.
Stomatal closure under drought stress results in a disruption
between electron excitation and photosynthetic consumption
ROS
hydroxyl radical (Sharma etal., 2022). Formation of H,O, leads

thereby generating such as superoxide and

to the peroxidation of cellular membrane lipids and

degradation of enzyme proteins and nucleic acid in
Organelles including Chloroplast and mitochondria. Hence,
such condition creates oxidative stress on the yields (Hussain

etal., 2019).

Abscisic acid and cysteine content

A major stress signal formed during drought is abscisic acid
which leads to a decrease in cytokinin contents in plants
(Nyaupane et al., 2024). Stomata closure during water deficit is
controlled by the hormone abscisic acid which results in the

inhibition of xylem transport, and reduction of turgor pressure
and in turn, affects root growth (Osmolovskaya et al., 2018).
Cysteine is present in the wheat organs found in the leaves. In
water-insufficient conditions, its contribution to proteolysis
activity increases (Poddar et al., 2022).

DROUGHT RESISTANCE AND TOLERANCE MECHANISM

Drought resistance is the capacity to yield its economic product
with a minor reduction in a water deficit environment vis a
water-free constraint environment (Rijal et al., 2020). Drought
resistance in plants involves mainly 4 mechanisms- drought
avoidance, drought tolerance, drought escape, and drought
recovery (Fang & Xiong, 2015). Figure 2. The process of
shortening the life cycle or growing season of plants to avoid dry
environmental conditions is known as drought escape (Rijal
etal., 2020). Reduced time to flowering and a shorter time in the
vegetative phase can be highly beneficial to wheat seedlings
during the drought as this will reduce the time that it will take to
be exposed to drought during the flowering and post-flowering
grain fill periods (Shavrukov et al, 2017). A short vegetative
phase will lead to low plant biomass because less time is
available to produce photosynthates and to fill seeds with
nutrients (Shavrukov et al., 2017). Drought avoidance is the
capacity of plants to retain relatively high tissue water potential
in order to support physiological activities despite a lack of
water in the root zone. It is the mechanism of slow plant growth,
apertures closure, decreased rate of photosynthesis and
transpiration, minimal root system formation, and change in
many other bodily processes (Shavrukov et al, 2017). Leaf
rolling is one of the most general forms of protection against
water loss (Chutia & Borah, 2012). Some adaptive features of
plant roots to drought include long root length, dense root mass,
and high root mass density. A Denser root system also absorbs a
relatively bigger amount of water than thin roots because more
roots could touch with a relatively bigger amount of water
vapor that exists in the soil (Comas et al, 2013). Drought
tolerance refers to a plant's ability to withstand conditions of
water deficit through physiological activities like the production
of osmoprotectant, through morphological activities like
enhanced root spread, through the formation of the waxy layer,
and through biochemical activities like build up of proline and
soluble sugars (Nyaupane et al, 2024). Thus, the stress
tolerance of wheat can be identified by determining the stress
tolerance indices of wheat crops (Poudel et al, 2023). The
NL1327 genotype had a maximum mean yield of 2.0 tons per
hectare in drought conditions (Poudel et al, 2020). The
morphological tolerance responses that wheat acclimatizes
when experiencing drought stress include enhanced root
penetration into the soil, enhanced root density, enhanced
root-to-shoot ratio, presence of trichomes, and cuticular wax
(Rijal et al., 2020).
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Figure 2. Mechanism of drought resistance in wheat (Source: Nyaupane et al., 2024).

Cuticular wax and trichomes presence

The cuticular membrane is thin, ranges from 0.1-10 pm in
thickness, and consists of polyester and a single hydrocarbon
chain (Bietal., 2017). Crops grown in drought conditions develop
cuticular wax as a protective mechanism to minimize the
decrease in leaf water potential, which is crucial for high
photosynthesis rate and relatively high yield under drought
stress (Guo et al., 2016). The degree of waxiness is generally
estimated visually determining the part of bluish-white colored
wax on the surface of the shoot and spikes during field
phenotyping. The degree of waxiness is generally estimated
visually determining the part of bluish-white colored wax on the
surface of the shoot and spikes during field phenotyping.
Contrary to this, qualitative analysis of cuticular waxes reveals
that those genotypes with higher B-diketones, one of the two
main constituents of wax with alkanes being the other, are more
drought resistant (Bi etal., 2017). Trichomes are present on the
outer epidermal layer of plants and help to add to the layer’s
depth, aiding in protection from drought stress.

Physiological drought tolerance

Other aspects of physiological drought tolerance are kept
throughout the stay-green, alterations in the Leaf water
potential, abscisic acid, osmotic adjustment, cell wall elastic
adjustment, dehydrin, and transpiration efficiency.

Stay green

Stay-green is therefore the ability that enables plants to
maintain green leaves under conditions of physiological drought
stress in order to allow photosynthesis for the synthesis of
energy and other nutrients in the wheat crops (Mwamahonje
et al., 2021). Delayed senescence and appearance of greenness
are considered the stay-green trait of flag leaf under drought
conditions and are involved in altering cytokinin and ethylene
activities under drought conditions (Khadka et al, 2020).
Qualitative scores on the leaf color can be used to record the
degree of flag leaf senescence.

Leaf water potential

Plants can regulate the amount of water that is present in the
leaf through stomatal hole as a short-term strategy to water
deficiency and also different strategies of root architecture as
part of root development plans due to water pressure (Biel et al,,
2021). In those genotypes that sustained a higher rate of
photosynthesis, the leaf water potential was most realised at
the tillering stage of the crop (Abid et al., 2018).

Abscisic acid production

ABA is one of the root signaling hormones synthesized during
water deficit conditions and has a major role for reduction of
stomatal conductance for transpiration as well as involved in
the promotion of nHRS (Kong et al., 2021).

Osmotic adjustment and cell wall elasticity

The process by which plant cells accumulate solutes up to a total
concentration higher than the external soil solution and
promote water from the soil into the cell in water-stress
condition is known as osmotic adjustment (Hou et al., 2021).
Such solutes shield the cells architecture, catalyze their
function, enhance osmosis, and avert dehydration damages by
preserving cell turgidity. Cell wall elastic adjustment property
increases during water stress conditions in order to avoid the
decrease in water potential due to cell shrinkage and,
consequently, the reduction of cell size (DaCosta & Huang,
2006).

Dehydrin and transpiration efficiency

Dehydrin is one of the hydrophilic proteins created as a drought
tolerance option and has the capacity to increase the shoot dry
matter production in wheat crops through increased water
holding capacity, increased chlorophyll content, maintains
photosynthesis and synthesis of compatible solutes (Hassan
et al., 2015). The rate of transpiration was reduced at higher
extent than that of the rate of leaf net CO, assimilation under
moisture stress conditions (Changhai et al., 2010).
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Bio chemical drought tolerance

Dissolvable sugars, cysteine, proline content, Glycine betaine,
mannitol, Jasmonic acid Ethylene, Cytokinin, amino acids,
chlorophyll content (Guizani et al., 2023), enzymatic and non-
enzymatic antioxidant activities, are synthesize inside the plant
as a stress defense when confronted to drought (Rijal et al.,
2020). In the leaf and roots maximum concentration of water
soluble carbohydrates of glucose, galactose, rhamnose and
xylose content in drought tolerant genotypes were higher than
that of sensitive genotypes (Samaneh et al., 2020).

Cysteine and proline

The cysteine has been identified as a wheat antioxidant that
guards against the oxidative stress caused by the water stress
conditions by synthesizing the glutathione (Elkelish et al., 2021).
Proline works as an antioxidant and scavenges reactive oxygen
protects the denaturation of
(Marthandan et al., 2020). proline brings antioxidant properties

species, macromolecules
and eliminates ROS, prevents the denaturation of macromolecules
and controls cytosolic activity (Khan et al., 2019).

Glycine betaine and mannitol

Glycine betaine is involved in osmoprotection due to drought
stress by stabilizing osmotic potential and quaternarily
structured proteins (Ahmed et al., 2019). Mannitol is a sugar-
alcohol that is involved in osmoregulation as a coenzyme
regulator and scavenging of reactive oxygen species as
compatible osmolytes to support cell turgor and beneficial plant
water relations for the conservation of biological functions and
soil water acquisition (El Habti et al., 2020).

Jasmonic acid, cytokinin, and Ethylene

Jasmonic acid (JA) enhances the antioxidants activity, Cytokinin
delays the senescence of leaves and Ethylene leads to stomatal
closure and SodERF3 gene expression (Zia et al, 2021) that
cause tolerance to drought stress (llyas et al., 2021).

Reactive oxygen species

Drought stress is one of the dreadful factors that lead to the
enhancement of Reactive oxygen species which include singlet
oxygen, hydrogen peroxide, superoxide, hydroxyl radicals,
however, kept controlled by the antioxidant system in plants
(Kaur & Asthir, 2017). Antioxidant enzyme catalaise and
Ascorbate peroxidase of the cells neutralize reactive oxygen
species including H,O, by converting it to O, and H,O.
Nonenzymatic antioxidant activities
glutathione and Glutathione protects the
chloroplast from the toxic effect of H,O, by enhancing the ratio

take place through
carotenoids.

of the oxidized and reduced glutathione and carotenoid and
detoxifies the integrant of the photosystem through dissipating
excessive light energy to heat (Figure 3).

Molecular defence mechanism
Secondary messengers such as Ca%", ROS and ABA have crucial
function in the signal-transmitting pathway (Kaur & Asthir,
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2017). MAPK (Mittogen activated
phosphorylation results in activation of transcription factors and
synthesis of drought tolerance protein which lowers moisture
stress in wheat crop (Nykiel et al., 2022). Several transcription
factors genes including bZIP, DREB, DOF, HSF, MYB, NAC, and
WRKY involved in drought tolerance protein formation (Hrmova
& Hussain, 2021). There were two sets of genes in plants under
drought stress: the ABA-responsive genes including bZIP, HSF,
MYB, and WRKY and the non-ABA-responsive gene including
HSF, WRKY, ERF, and NAC (Hrmova & Hussain, 2021). The target
proteins of drought-responsive genes are the proteins that
belong to signalizing and transcription regulation (protein
phosphatases, and transcription factors),
cytomembrane, and LEA proteins,
osmoprotectants, aquaporines and sugar transporters. Plants
manage the genes expressing some antioxidant enzymes like

protein  Kinase)

kinases, protect

other antioxidants,

superoxide dismutase (SOD), catalase (CAT), and peroxidases
which are involved in combating ROS thereby minimizing
oxidative injury. Increases of abscisic acid in roots in response to
drought induce different stress responsive genes (Muhammad
Aslam et al, 2022). This leads to the build up of compatible
solutes, LEA proteins, dehydrins and shock proteins, chitinases
glucanases and other protective proteins (Figure 4). Heat shock
protein such products enable plant to adjust osmotic potential of
the leaf and retain higher level of relative water in the leaf at low
leaf water potential under drought (Nykiel et al., 2022).
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Figure 3. Biochemical drought tolerance mechanism in wheat.
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Figure 4. ABA involved in molecular drought tolerance.
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Drought recovery

Drought recovery is the capacity of the plant to resume growth
following exposure to severe drought stress (llyas et al., 2021).
Restoration capacity is important for genetic advancement and
production of improved drought-tolerant type of crop species.
Leaf respiration of three wheat genotypes was observed by
exposing them to drought stress and rapid recovery was
observed in the Katya genotype by rewatering which is
considered as most drought tolerant. Leaf respiration
experiment was conducted on three wheat genotypes with and
without drought stress, quick recovery of photosynthesis was
noted in Katya genotype by rewatering thinking it most tolerant
to drought (Vassileva et al., 2011). Post-drought recovery is
possible through proline accumulation in such conditions.

MANAGEMENT PRACTICES FOR DROUGHT STRESS IN
WHEAT

Drought stress can be managed by the production of the
appropriate wheat genotypes using various genetic technologies
along with the adjustment of agronomic practices.

Genetic management

The plant growth should be minimized in farms and crops should
only be grown under conditions of drought stress. New-
generation drought-tolerant wheat cultivars are being produced
by employing modern techniques like physiological trait-based
breeding, QTL, transgenic technology, and the application of
different chemical substances like nitric oxide, glycine, proline,
antioxidants, and microorganisms like fungi, and bacteria (llyas
et al, 2021), Genome editing, Genetic marker-assisted
backcrossing (Sharma et al., 2022). CRISPR/Cas9 is preferred
over other conventional genome editing because of two main
advantages (Sami et al., 2021), First is that sgRNAs can function
with the same Cas9 protein at different locations and second the
target DNA specificity can be easily changed by reprogramming
the sgRNA sequence (Sami et al., 2021). QTLs may be transferred
to wheat using CriSpr-Cas9 technology that produces transgenic
wheat with potential for drought stress tolerance of
physiological traits like net photosynthesis, relative water
content, and cell membrane stability undiscovered by previous
methods (Poddar et al., 2022). Transgenic approach points out
the genes, microRNA, and transcription factors that would help
introduce the desired characteristics into transgenic plants
(Anwar & Kim, 2020). Gene encoding elements like bZIP, bHLH,
ERF, NAC, HD-ZIP and WRKY are employed as drought
tolerance tools in wheat. MicroRNAs (miRNA) are a complex of
small single-strand RNA with a length of (21 - 24) nucletides that
are involved in specific regulation of gene expression during the
plant defense response toward the biotic and abiotic stress
stimuli (Anwar & Kim, 2020). A marker is a segment of DNA that
links that specific site within the genome to a particular location
and is used for the identification of stress -resistance traits. Pcr
and non Pcr based molecular markers such as restriction
fragment length polymorphisms (RFLP), AFLP, Simple Sequence
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Repeat (SSR), and Single nucleotide polymorphism (SNP) are
employed to track stress resistance traits (Younis et al., 2020).
Some of the adaptation strategies developed through genetic
and phenotypic variations by the plants to defend themselves
against the abiotic stress include; crosstalk,
epigenetic memories, ROS signaling, plant hormone build up

molecular

including salicylic acid, ethylene, jasmonic acid and abscisic acid,
change in redox status, inorganic ion defense, R gene resistance
and systemic acquired resistance (SAR) (Ghorbanpour & Varma,
2017). Genetic engineering for Water Use Efficiency (WUE)
includes use of genes for compatible osmolytes such as sugar,
and amino acids and overexpression of embryonic proteins for
dehydration tolerance (Bagale, 2021).

Agronomic practices

Some of the management practices of drought stress, include
seed treatment; seed priming; foliar spraying; application of
organic matter; intercropping; provision of silage; construction
of rain water harvesting structures; and use of micro irrigation
techniques. When grown
unavailability (Yadav et al., 2023), seed priming with glycine
betaine or with water minimized the level of electrolyte leakage

under conditions of water

and thereby enhanced the cellular membrane stability index
(Ahmed et al., 2019). Seed Ethephon application occupies the
leaf water during tillering and stimulates the root volume and
dry weight under drought stress (Yang et al, 2021). There
should be attempts to alter the flowering time; there should be
breeding systems for the short or the long-dwelling crops; and
there should be contamination screenings of tolerant
germplasm (Dolferus et al, 2011). Mulches prevent weed
growth by denying them access to light into the soil while at the
same time enhancing access to water in reducing plants in dry
seasons (Nyaupane et al., 2024). For improvement in the result,
the diversification of the crop, water conservation, water
harvesting, and watershed development should be given
importance. Among the plant growth substances salicylic acid,
cytokinin and Abscisic acid application enhance the water
potential and chlorophyll content to minimize water stress in
wheat plant, However it can be controlled by exogenous
application of silicon (Lamaoui et al., 2018). It was established
that the ridge and furrows method and raised bed sowing used
20-30% less irrigation water and improves water use efficiency.
The use of nitrogenous potassium fertilizer at the grain filling
stage accelerates the rate of photosynthesis so as to enhance
the dry matter translocation to veins and hence increase the
grain weight through compensating for the effects of drought.

Effective management of irrigation water

Irrigation scheduling is the determination of the time and the
rate at which irrigation should be practiced (Ahmad & Kumar,
2015). Schedule irrigation is one important factor that have
been known to affect the efficient use of water, energy and
other production inputs in the crop production system. It is
suggested that water should be provided on the field soon after
sowing the wheat seeds. In case of a shortage of water, wheat
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should be irrigated in it’s critical stages such as the Crown Root
Initiation Stage, the heading stage and the grain filling stage (Aryal
et al, 2021). These stages are very critical stages where water
supply is very crucial (Aryal et al., 2021). Based on the growing
period, climate, and requirement of soil, wheat needs around 400-
650 mm of water for best production (Pareek et al, 2023).
Tensiometer in 35 cm depth at 50 Kpa tension recorded maximum
grain yield of 3184 kg/ha in 2013/2014, while minimum grain yield
was observed at tensiometer in 20 cm depth with 20 Kpa tension
at 2502 kg/ha in 2013/2014.Performance of tensiometer in 35 cm
depth with 50 Kpa tension in 2014/15 (Sah et al., 2017). In the case
of the wheat, the plants took the largest amounts of soil water
from the O to 45 cm soil profile. Thus, only O - 45 cm of the soil
profile needs to be taken for scheduling irrigation water for wheat
crops grown in sandy soil. Full supplemental irrigation treatments
should only be initiated once the available soil water is at 50
percent of the total amount of water.

Application of organic amendments (Biochar)

Biochar is an organic soil conditioner which is used to enhance the
content of carbon and organics in the soil, the capacity of the soil to
conserve moisture, proper soil structure and fertility, and the
porosity of the soil to improve the capacity of the soil to impound
polyvalent cations (Zaheer etal., 2021). It gives a higher yield such
as fertile tiler (19.50%), spikelet length (6.52%), number of grains
per spikelet (3.07%), thousand grain weight (6.42%), biological yield
(9.43%) and economic yield (13.92%) compared with the controlled
condition of drought stress in wheat crop (Haider et al., 2020).

Conclusion

Plants suffer from drought stress at any phase of their lifecycle.
Drought stress shows morphological effects on Germination,
number of tillers, leaf, and root

flag length. Similarly,

Physiological processes such as relative water content,
photosynthetic rate, and chlorophyll content vary with water
availability in soil. Biochemical constituents like Proline content,
Antioxidant enzymes defense system, osmotic adjustment,
Abscisic acid production, and lipid peroxidation are also affected
by water scarcity in soil. Basic physiological, morphological, and
biochemical processes need to be studied well to clarify the
defense mechanism of wheat crops. Mainly four main defense
mechanisms escape, avoidance, recovery, and tolerance are
shown by plants. Leaf respiration can be continued well by
frequent watering after passing through drought soil conditions.
Knowledge of these basic concepts helps researchers to find new
drought-tolerant drought-drought-tolerant drought wheat
cultivars using modern technology like Molecular markers,

genome editing, and transcriptase factors.
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