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 Accurate monitoring of forest carbon stocks is essential for effective climate change mitiga-

tion. This study aimed to identify the optimal Sentinel-2 vegetation index (VI) for estimating 

aboveground carbon (AGC) stock in the Raktamala Namuna Community Forest, Nepal. Field 

data from 53 circular plots (500 m² each) were used to compute AGC based on tree-level den-

drometric measurements and species-specific wood density. Ten VIs, including traditional (e.g., 

NDVI, EVI) and red-edge-based indices (NDVIre1–NDVIre4), were derived from a cloud-free 

Sentinel-2 Level-2A image (April 7, 2023). Five regression models (linear, logarithmic, quadrat-

ic, power, and exponential) were tested for each VI–AGC relationship. The average AGC was 

63.88 t·ha-¹. The red-edge index NDVIre1 (using Band 5, 705 nm), modelled with a logarithmic 

function, yielded the highest predictive accuracy (R² = 0.7205, r = 0.848, p < 0.001), outper-

forming traditional indices like NDVI (R² = 0.609). This study demonstrates the superior sensi-

tivity of Sentinel-2’s red-edge band (705 nm) to canopy structure in dense tropical forests. The 

study concluded that the NDVIre1 logarithmic model provides a novel, cost effective tool for 

operational and scalable carbon monitoring in community-managed forests, directly support-

ing REDD+ implementation and localized forest management.  
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INTRODUCTION 

 

Forests serve as vital carbon sinks, playing a crucial role in cli-

mate change mitigation through photosynthesis. Accurate quan-

tification of forest carbon stocks is therefore fundamental to 

initiatives like REDD+ (Reducing Emissions from Deforestation 

and Forest Degradation). Among terrestrial carbon pools, 

aboveground biomass (AGB) is both dynamic and observable, 

representing approximately 30% of the total pool, with carbon 

content estimated as 47% of AGB (IPCC, 2006). While field-

based methods provide high-accuracy data, they are often re-

source-intensive, time-consuming, and challenging to implement 

across large or inaccessible forest areas. These methods involve 

rigorous plot establishment, dendrometric measurements, and 

the application of allometric equations, which, while accurate, 

limit the spatial extent and frequency of monitoring. In contrast, 

remote sensing offers a scalable and cost-effective solution for 

regularly monitoring forest conditions over extensive regions 

(Ravindranath & Ostwald, 2008; Pandit et al., 2018). Among the 

available remote sensing platforms, Sentinel-2, developed by 

the European Space Agency (ESA), has emerged as a valuable 

tool for forest monitoring. It provides high spatial resolution 

imagery (10–20 meters), frequent revisit intervals (every five 

days), and enhanced spectral coverage, including red-edge 

bands that are particularly sensitive to vegetation structure and 

chlorophyll content (Delegido et al., 2011; Gómez, 2017). The 

red-edge region of the spectrum (approximately 700-750 nm) is 

where leaf reflectance changes rapidly from low reflectance in 
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the red (due to chlorophyll absorption) to high reflectance in the 

near-infrared (due to leaf scattering). This makes it exceptional-

ly useful for assessing vegetation health and density. Various 

studies have explored the relationship between vegetation indi-

ces (VIs) derived from Sentinel-2 imagery and forest biomass, 

reporting a wide range of correlation strengths, with coeffi-

cients of determination (R²) ranging from 0.017 to 0.54 (Muhe & 

Argaw, 2022). Despite the growing body of literature, limited 

research has been conducted in the context of community-

managed forests in Nepal, where forest conditions, manage-

ment practices, and species composition may differ significantly 

from other regions. Community forests in Nepal are character-

ized by selective logging, fuelwood collection, and other anthro-

pogenic pressures, which create a heterogeneous forest struc-

ture that may challenge broad-spectrum biomass estimation 

models. Moreover, the potential of Sentinel-2's red-edge bands 

to overcome this limitation in such managed, complex ecosys-

tems has not been sufficiently explored. 

This study addresses this gap by evaluating and comparing the 

efficacy of traditional and red-edge- based VIs for estimating 

aboveground carbon (AGC) in a tropical community forest of 

Nepal. The specific objectives of the study were to estimate 

AGC using ground-based inventory data; derive a suite of VIs 

from Sentinel-2 imagery; statistically model the relationship 

between AGC and each VI and to identify the optimal VI and 

model for accurate carbon stock estimation in the study area. By 

combining field measurements with satellite data, this research 

contributes to the development of scalable, cost effective meth-

odology to enhance carbon monitoring in community managed 

forests, directly supporting REDD+ implementation and sustain-

able management practices in Nepal and similar regions. 

 

MATERIALS AND METHODS  

 

Study area 

The study was conducted in the Raktamala Namuna Community 

Forest (RNCF), located in Saptakoshi Municipality, Saptari Dis-

trict, southeastern Nepal (Figure 1). The forest covers 374.42 ha 

and lies within the tropical bioclimatic zone, with elevations 

ranging from 371 m to 875 m above sea level and an average 

slope of 28°. The region experiences a hot summer and a distinct 

monsoon season, with annual rainfall exceeding 1500 mm. The 

soil is primarily alluvial and sandy loam. Dominant tree species 

include Shorea robusta, Anogeissus latifolia, Syzygium cumini,  

Mallotus philippinensis, and Lagerstroemia parviflora. To ensure 

analysis focused exclusively on forested pixels, 48.94 ha of non-

forest area (settlements, agriculture) were excluded, leaving 

325.47 ha of forested land for analysis.  

 

Field data collection and biomass estimation  

A systematic sampling approach was employed using ARcGIS 

10.1, at 1% intensity, ensuring uniform spatial coverage and 

minimizing bias (Gautam et al., 2021). A total of 64 circular plots, 

each 500 m² (radius = 12.62 m) were initially established. After 

excluding 11 plots in non-vegetated areas (e.g., rivers and 

ponds), 53 plots were retained for analysis. Within each plot, all 

trees with diameter at breast height (DBH) ≥ 5 cm were meas-

ured for DBH using a diameter tape and for height using a laser 

range finder, respectively. Slope corrections were applied to plot 

boundaries where necessary (Laar & Akça, 2007). Aboveground 

biomass (AGB) for each tree was calculated using the widely 

validated pantropical allometric equation (Chave et al., 2005): 

 

AGB=0.0509×ρxD2xH 

 

Where: 

ρ = wood density (g/cm³), D = diameter at breast height (cm),  

H = tree height (m). 

 

This equation was selected because it is widely validated for 

tropical forests and requires only DBH, height, and wood densi-

ty, making it practical for inventory applications. Wood density 

values were obtained from species-specific literature or as-

signed a default value of 0.674 g/cm³ when unavailable (Pandit 

et al., 2018). Plot level AGB was summed and converted to 

aboveground carbon (AGC) using the standard IPCC (2006) 

conversion factor of 0.47. Results were scaled to tons per  

hectare (t·ha-¹).  

Figure 1. Location of Raktamala Namuna Community Forest in Saptari District, Nepal.  
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Satellite image processing and vegetation indices 

A cloud free Sentinel-2 Level-2A (Bottom-of-Atmosphere re-

flectance) image from April 7, 2023, was acquired via the Coper-

nicus Scientific Hub. The image was subset to the study area in 

ArcMap. Bands B1, B9, B10, B11, and B12 were excluded due to 

low relevance to vegetation analysis. The remaining spectral 

bands B2 (Blue, 490 nm), B3 (Green, 560 nm), B4 (Red, 665 nm), 

B5 (RE1, 705 nm), B6 (RE2, 740 nm), B7 (RE3, 783 nm), B8 (NIR, 

842 nm), and B8a (RE4, 865 nm) were used to compute ten veg-

etation indices (VIs) (Table 1). These indices were selected to 

represent a range of spectral behaviors, including ratio-based 

indices (NDVI, RVI), soil-adjusted indices (RDVI), atmospheric-

resistant indices (EVI), and indices utilizing the green and red-

edge bands, which are known to be sensitive to different vegeta-

tion properties. Ten vegetation indices were selected based on 

their relevance in previous biomass estimation studies. The 

equations are presented in Table 2. 

 

Pixel value extraction 

Using the Zonal Statistics tool in ArcMap, the mean pixel value 

for each VI was extracted for a circular buffer (radius=12.62 m) 

around each plot centroid, ensuring spatial correspondence 

between field and satellite data.   

 

Statistical analysis 

Statistical analyses were conducted in RStudio (v4.3.1) and  

Microsoft Excel. The relationship between plot level AGC  

(t·ha-¹) (dependent variable) and each VI (independent variable) 

was assessed using five regression models:  

 

Linear: Y = β₀ + β₁ × VI, 

Logarithmic: Y = β₀ + β₁ × ln(VI), 

Quadratic: Y = β₀ + β₁ × VI + β₂ × VI, 

Power: Y = β₀ × VI^β₁, 

Exponential: Y = β₀ × e^(β₁ × VI). 

Testing the multi-model approach accounts for potential non-

linearity and signal saturation in high biomass forests (Kumar & 

Mutanga, 2017). Model performance was evaluated using the 

coefficient of determination (R²) and Pearson’s correlation coef-

ficient (r), with statistical significance set at the p < 0.05 level. 

The best-performing model for each VI was selected based on 

the highest R². Models with zero or negative VI values were ex-

cluded from fitting power and exponential functions. 

 

RESULTS AND DISCUSSION 

 

Forest composition and carbon stock estimates 

During the study, 53 sample plots contained a total of 974 trees 

from 41 species, indicating relatively high species diversity. 

Shorea robusta was the dominant species, accounting for 61% of 

the total individuals, followed by Buchanania latifo-

lia (7%), Cascaria graveolens (4%), Ehretia acuminata (3%), 

and Semicarpus anacardium (2%). Descriptive statistics for the 

measured trees were height (min = 1.5 m, max = 28 m, mean = 

10.2 ± 0.16 m) and DBH (min = 5 cm, max = 96 cm, mean = 24.16 

± 0.52 cm). The average aboveground biomass density was 

135.91 t·ha-¹, corresponding to an estimated carbon stock of 

63.88 t·ha-¹. Across the total analyzed forest area of 325. 47 ha, 

the total aboveground biomass stock was 7,204.17 Mg, with a 

corresponding carbon stock of 3,385.96 Mg C. The DBH and 

height distributions indicate a maturing forest with a mix of 

young and mature trees, characteristic of a managed community 

forest. Notably, the estimated carbon stock (63.88 t·ha-¹) is low-

er than the national average of 82–92 t·ha-¹ reported by the 

Forest Resources Assessment/National Forest Inventory (FRA/

NFI, 2015). While the national assessment considered trees 

with DBH ≥ 10 cm and this study included smaller trees (DBH ≥ 

5 cm), the contribution of these smaller stems to total biomass is 

generally modest (5-15%), suggesting that methodological  

differences alone cannot fully account for the observed  

Table 1. Sentinel-2 spectral bands used in analysis.  

Band Name Sentinel-2 Band ID 

Blue B2 
Green B3 
Red B4 
Red Edge 1 B5 
Red Edge 2 B6 
Red Edge 3 B7 
Near-Infrared (NIR) B8 
Red Edge 4 B8a 

Table 2. Vegetation Indices and their formulations 

Vegetation Index Formula Reference 

Normalized Difference Vegetation Index (NDVI) (NIR – Red)/(NIR + Red) Rouse et al. (1974) 

Renormalized Difference Vegetation Index (RDVI) (NIR – Red)/√(NIR + Red) Roujean & Breon (1995) 
Modified Simple Ratio (MSR) [(NIR/Red) – 1] / [(NIR/Red)^½ + 1] Chen (1996) 
Ratio Vegetation Index (RVI) NIR/Red Pearson & Miller (1972) 
Green Normalized Difference Vegetation Index (GNDVI) (NIR – Green)/(NIR + Green) Gitelson et al. (1996) 
Enhanced Vegetation Index (EVI) 2.5 × [(NIR – Red)/(NIR + 6×Red – 7.5×Blue + 1)] Huete et al. (2002) 

NDVI re1 (NIR – RE1)/(NIR + RE1) Gitelson & Merzlyak (1994) 

NDVI re2 (NIR – RE2)/(NIR + RE2) Fernández-Manso et al. (2016) 

NDVI re3 (NIR – RE3)/(NIR + RE3) Fernández-Manso et al. (2016) 

NDVI re4 (NIR – RE4)/(NIR + RE4) Kross et al. (2015) 
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discrepancy. More likely, the reduced carbon stock reflects the 

forest’s status as a community-managed system subject to se-

lective harvesting, fuelwood extraction, and other anthropogen-

ic disturbances that constrain biomass accumulation compared 

to protected or natural forests typically underpinning national 

estimates. This interpretation aligns with recent findings 

by Joshi et al. (2020), who reported variable and often lower 

carbon stocks in Terai community forests due to management 

impacts. Additionally, the forest’s successional stage, dominance 

by Shorea robusta, and local site conditions, such as topography 

and soil quality, further influence its carbon storage capacity. 

These findings underscore the necessity of conducting localized, 

site-specific carbon assessments to ensure accurate carbon  

accounting and to establish realistic baselines for REDD+ initia-

tives, rather than relying on generalized national figures.  

 

Relationship between vegetation indices and AGC stock 

Regression analysis revealed significant relationships between 

aboveground carbon stock (AGC) and vegetation indices (VIs) 

derived from Sentinel-2 imagery, with 8 out of 10 evaluated 

indices showing statistically significant associations (p<0.05). 

Across 50 tested regression models (10 VIs × 5 model types), 

the red-edge index NDVIre1 demonstrated the strongest pre-

dictive capability. Its logarithmic model achieved the highest 

correlation (r = 0.848, R² = 0.7205, p < 0.001), significantly out-

performing all other indices. Among traditional indices, NDVI, 

RDVI, EVI, and GNDVI showed strong performance under quad-

ratic models, achieving R² values between 0.5792 and 0.6093 

and correlation coefficients ranging from 0.74 to 0.78. These 

results align with established literature highlighting their sensi-

tivity to key biophysical parameters: NDVI responds to chloro-

phyll content and canopy cover (Rouse et al., 1974); RDVI reduc-

es soil background noise (Roujean and Breon, 1995); EVI  

corrects for atmospheric and canopy background effects (Huete 

et al., 2002), and GNDVI, leveraging the green band, offers  

enhanced sensitivity to chlorophyll concentration (Gitelson  

et al., 1996). The ratio-based indices RVI and MSR showed mod-

erate predictive ability (R² < 0.45, r ≈ 0.67), while two red-edge 

indices (NDVIre3 and NDVIre4) showed no significant correla-

tion with AGC (p > 0.05). The complete results are presented in 

Table 3 (R2) and Table 4 (r), while the regression equations for 

the best performing models of each VI are summarized in Table 

5. Despite their effectiveness, these traditional indices are 

prone to saturation in high-biomass settings, where further in-

creases in leaf area or biomass produce diminishing returns in 

index response, limiting accuracy in dense forests like the study 

area. In contrast, the superior performance of NDVIre1 stems 

from its reliance on Sentinel-2’s red-edge Band 5 (~705 nm), 

which captures the steepest portion of the red-edge reflectance 

curve. With an R² of 0.7205 and an r of 0.848, its predictive pow-

er substantially exceeds that of the traditional indices. Unlike 

traditional visible and NIR bands, the red edge region remains 

sensitive to variations in leaf area index (LAI), chlorophyll con-

tent, and canopy structure without rapid saturation (Delegido  

et al., 2011), enabling more accurate biomass discrimination in 

dense, multi-layered tropical forests such as the Raktamala Na-

muna Community Forest (RNCF). Our findings corroborate 

studies by Khan et al. (2020) and Padilla et al. (2017), who also 

found red-edge indices to be more effective than traditional 

ones in high-biomass environments. Consistent with this  

pattern, Muhe & Argaw (2022) demonstrated red-edge indices 

superior to NDVI for biomass estimation in African montane 

forests, while Poudel et al. (2023) also reported similar  

advantages of Sentinel-2 red-edge data in Nepal's Chure  

region. The differential performance among the red-edge indi-

ces (NDVIre1 > NDVIre2 > NDVIre3 ≈ NDVIre4) further under-

scores the spectral specificity of carbon estimation.  Band 5 (705 

nm) captures the steepest slope of the red-edge reflectance 

curve, maximizing responsiveness to vegetation structure, 

whereas Bands 6–8a (used in NDVIre3 and NDVIre4) are  

increasingly affected by water absorption and atmospheric in-

terference, weakening their correlation with biomass (Kross  

et al., 2015; Fernández-Manso et al., 2016). This confirms that 

red-edge bands are not functionally equivalent and must be 

selected with care.  

Table 3. Coefficients of determination (R2) between AGC and vegetation indices. 

VIs Linear Logarithmic Quadratic Power Exponential 

NDVI 0.599 0.5532 0.6093 0.583 0.6064 

GNDVI 0.566 0.5374 0.5792 0.563 0.5751 

RDVI 0.606 0.5913 0.6067 0.604 0.5971 

EVI 0.607 0.5704 0.607 0.594 0.602 

MSR 0.44 - 0.4529 - 0.4349 

RVI 0.435 0.4399 0.4529 0.448 0.4519 

NDVIre1 0.693 0.7205 0.7169 0.708 0.6709 

NDVIre2 0.202 0.1694 0.2144 0.176 0.2058 

NDVIre3 0.023 - 0.0237 - 0.0224 

NDVIre4 0.038 - 0.0399 - 0.0385 

Note: Blank cells indicate that the model could not be generated due to zero or negative values of VIs. 
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Spatial mapping of carbon stock 

 Using the best -performing NDVIre1 logarithmic model, a spatial 

map of AGC stock was generated for the entire 325.47-ha com-

munity forest (Figure 2). The map reveals marked spatial hetero-

geneity: higher carbon stocks (> 80 t·ha-¹) are concentrated in 

the forest interior with dense vegetation, while lower values (< 

40 t·ha⁻¹) occur near rivers, roads, agricultural margins, and oth-

er disturbance prone edges. This pattern aligns with ecological 

expectations, as forest edges experience higher human activity, 

microclimate stress, and reduced tree density, all of which limit 

carbon accumulation. Recent studies, including Gautam et al. 

(2021), have mapped similar spatial carbon variability in Nepa-

lese community forests, directly linking it to management access 

and disturbance regimes. Beyond accurate estimation, this map-

ping capability demonstrates the practical utility of the Sentinel-

2 NDVIre1 model. It provides forest managers and REDD+ 

stakeholders with a cost effective, scalable tool not only to quan-

tify total carbon but also to identify spatial patterns of storage 

and loss, enabling targeted conservation and sustainable forest 

management interventions. These findings have crucial implica-

tions for forest carbon monitoring. They show that Sentinel-2's 

red-edge band (B5) provides a powerful, practical tool for large-

scale, accurate AGC mapping in tropical forests. While traditional 

indices remain valuable for general vegetation monitoring, 

NDVIre1 with a logarithmic model emerges as the preferred 

choice for high-precision carbon assessment in dense, tropical, 

community-managed forests. This evidence supports the integra-

tion of Sentinel-2 data into national REDD+ frameworks and com-

munity-based forest management programs, enabling cost effec-

tive, scalable, and frequent monitoring that directly contributes 

to conservation efforts and climate change mitigation strategies. 

Table 4. Correlation coefficients (r) between AGC and vegetation indices. 

VIs Linear Logarithmic Quadratic Power Exponential 

NDVI 0.77*** 0.74*** 0.78*** 0.76*** 0.77*** 
GNDVI 0.752*** 0.733*** 0.761*** 0.75*** 0.758*** 
RDVI 0.778*** 0.768*** 0.778*** 0.777*** 0.772*** 
EVI 0.779*** 0.755*** 0.779*** 0.770*** 0.775*** 
MSR 0.663** - 0.673** - 0.659** 
RVI 0.663*** 0.671*** 0.672*** 0.669*** 0.659*** 
NDVIre1 0.832*** 0.848*** 0.846*** 0.841*** 0.819*** 
NDVIre2 0.448*** 0.411** 0.463*** 0.419*** 0.453*** 
NDVIre3 0.155 - 0.154 - 0.149 
NDVIre4 0.195 - 0.199 - 0.196 

Note: ***p < 0.001, **p < 0.01. Blank cells indicate insufficient data for model calculation. 

Table 5. Best-performing Regression Models for each vegetation index. 

Vegetation Index Best Model Regression Equation R² 

NDVI Quadratic y = 218.57x² + 2.0411x + 54.312 0.6093 
GNDVI Quadratic y = 543.48x² - 116.28x + 62.329 0.5792 

RDVI Quadratic y = -0.0121x² + 2.4773x + 28.285 0.6067 
EVI Quadratic y = -30.242x² + 537.1x + 42.611 0.607 

NDVIre1 Logarithmic y = 41.048ln(x) + 148.22 0.7205 

RVI Quadratic y = -12.506x² + 56.451x + 24.823 0.4529 
MSR Quadratic y = -72.893x² + 75.898x + 68.767 0.4529 

NDVIre2 Quadratic y = 3596.5x² - 62.638x + 74.246 0.2144 
NDVIre3 Quadratic y = -1457.4x² + 155.81x + 79.534 0.0237 

NDVIre4 Quadratic y = 2316.9x² + 275.86x + 85.137 0.0399 

Note: x represents vegetation index value; y represents aboveground carbon stock (t·ha-¹). 

Figure 2. Predicted aboveground carbon stock (AGC in t·ha-¹) map of  
Raktamala Namuna community forest, generated using the logarithmic model 
of the NDVIre1 index. 
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Conclusion 

 

This study demonstrates the efficacy of Sentinel-2 satellite data 

for estimating aboveground carbon stock (AGC) in tropical com-

munity forests of Nepal. The red-edge based vegetation index 

NDVIre1 modelled using a logarithmic function, provided the 

strongest predictive capability (r = 0.848, R² = 0.7205), signifi-

cantly outperforming conventional indices such as NDVI. This 

highlights the superior sensitivity of Sentinel-2's red-edge bands 

to the complex canopy structures found in managed tropical 

forests. While traditional VIs (e.g., NDVI, RDVI, EVI, GNDVI) also 

showed strong correlations, NDVIre1 is recommended as the 

optimal index for accurate, high-resolution carbon mapping in 

similar ecological contexts. Future efforts should focus on vali-

dating this model across varied ecological and management con-

ditions, developing localized allometric equations, and integrat-

ing Sentinel-2 data with LiDAR or other structural sensors for 

improved precision. Incorporating this methodology into nation-

al REDD+ frameworks and community-based forest manage-

ment programs can enable cost-effective, reliable carbon ac-

counting, supporting both local conservation goals and global 

climate change mitigation strategies.  
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