An overview of multifaceted role of Trichoderma spp. for sustainable agriculture
Abstract
The excessive use of chemical fertilizers and pesticides have caused several negative impacts on the environment and human health. They degrade soil fertility, build up resistance on pathogens, inhibit microbial activities and also enhance greenhouse gas emission. It is impossible and inappropriate to control plant pathogens by using chemical pesticides alone. Emphasize should be given towards organic fertilizers and pesticides to attain sustainability in agriculture. The use of Trichoderma is slowly increasing in the recent years among progressive farmers as an alternative to chemical fertilizers and pesticides. Slow rate of multiplication and colonization, susceptible to biotic and abiotic stresses, incomplete elimination of pathogens and high cost are the major problems behind its poor adoption among the farmers. To overcome these challenges different strains of Trichoderma should be identified which can multiply and colonize rapidly, least affected by environmental conditions and having wide host range on pathogens. In addition, farmers should be made aware about the importance of Trichoderma in agriculture through various extension facilities for its wide scale adoption. Trichoderma can be the viable and sustainable alternative which acts as biofertilizer, bioremediator and biocontrol agent. Nevertheless, the use of Trichoderma is limited on research activities and its application at farmers' level is not yet satisfactory. Thus, this study based on critical analysis of the research works from worldwide researchers aims to reveal the present scenario of the use of Trichoderma, its importance, modes of action, methods of application and multiplication, challenges for wide scale adoption and its appropriate solutions.
Keywords:
Adoption, Bio-fertilizer, Bio-remediator, Challenges, Present scenario, TrichodermaDownloads
References
Abdel-fattah, M. G., Shabana, M. Y., Ismail, E. A., & Rashad, M. Y. (2007). Trichoderma harzianum: a biocontrol agent against Bipolaris oryzae. Mycopathologia, 164, 81–89, https://doi.org/10.1007/s11046-007-9032-9
Abo-Elyousr, K. A. M., Waleed, Z., Mohamed, H. A. H., & Mohamed, M. E. (2014). Enhance suppressive effect of compost on soybean Rhizoctonia root rot by soil treatment with Trichoderma. Journal of Plant Physiology and Pathology, 2(2): 2-6
Ahlawat, O. P., Gupta, P, Kumar, S., Sharma, D. K., & Ahlawat, K. (2010). Bioremediation of fungicides by spent mushroom substrate and its associated
microflora. Indian Journal of Microbiology, 50(4), 390–395, https://doi.org/10.1007/s12088-011-0067-8
Alothman, Z. A., Bahkali, A. H., Elgorban, A. M., Al-Otaibi, M. S., Ghfar, A. A., Gabr, S. A., Wabaidur, S. M., Habila, M. A., & Ahmed, A. Y. B. H. (2020). Bioremediation of explosive TNT by Trichoderma viride. Molecules, 25(6), 1393, https://doi.org/10.3390/molecules25061393
Asad, S. A., Ali, N., Hameed, A., Khan, S. A., Ahmad, R., Bilal, M., Shahzad, M., & Tabassum, A. (2014). Biocontrol efficacy of different isolates of Trichoderma against soil borne pathogen Rhizoctonia solani. Polish Journal of Microbiology, 63(1), 95–103.
Askar, A. I., Ibrahim, G. H., & Osman, K. A. (2007). Biodegradation kinetics of bromoxynil as a pollution control technology. Egyptian Journal of Aquatic Research, 33(3), 111–121.
Atieno, M., Herrmann, L., Phan, H.T., Nguyen, N. K., Srean, P., Than, M.M., Zhiyong, R., Tittabutr, P., Shutsrirung, A., Bräu, L., & Lesueur, D. (2020). Assessment of biofertilizer use for sustainable agriculture in the Great Mekong Region. Journal of Environmental Management, (275), 111300, https://doi.org/10.1016/j.jenvman.2020.111300
BCA. (2018). Trichoderma – Effective Natural Bio-fungicide. Hasiruorganics. http://hasiruorganics.com/Trichoderma-effective-natural-bio-fungicide/
Benitez, T., Rincon, A. M., Limon, C. M., & Codon, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4), 249-260.
Benítez, Tahia, Rincón, Ana Limón, M. Carmen & Codón, Antonio (2005). Biocontrol mechanism of Trichoderma strains. International microbiology: Journal of the Spanish Society for Microbiology, 7, 249-60.
Bhagat, D., Koche. M., Ingle, R. W., & Mohod, Y. N. (2010). Evaluate the suitability of locally available substrates for mass multiplication of cellulolytic fungi and bacteria. Journal of Plant Disease Sciences, 5(1), 27-29.
Bhattacharjee, R. & Dey, U. (2014) An overview of fungal and bacterial biopesticides to control plant pathogens/diseases. African Journal of Microbiology Research, 8, 1749-1762.
Bigirimana, J., Meyer, G de, Poppe, J., Elad, Y., & Hofte, M. (1997). Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Med. Fac. Longbow. Ghent University Ghent, 62, 1001-1007.
Chen, L. H., Huang, X. Q., Zhang, F.G., Zhao, D. K., Yang, X. M., & Shen, Q. R. (2012). Application of Trichoderma harzianum SQR-T037 bio-organic fertiliser significantly controls Fusarium wilt and affects the microbial communities of continuously cropped soil of cucumber. Journal of the Science of Food and Agriculture,92(12), 2465–2470, https://doi.org/10.1002/jsfa.5653
Chou, H., Xiao, Y. T., Tsai, J. N., Li, T. T., Wu, H. Y., Liu, L. D., Tzeng, D. S., & Chung, C. L. (2019). In vitro and in planta evaluation of Trichoderma asperellum TA as a biocontrol agent against Phellinus noxius, the cause of brown root rot disease of trees. Plant Disease, 103, 2733–2741.
D’Urso, A., Gapes, D., & Bravi, M. (2008): Bioremediation of olive oil mill wastewaters by fungal (Trichoderma viride, strain 8/90) sequencing batch reactor. Chemical Engineering Transactions, 14, 481-486.
Doni, F., Zain, C. R. C. M., Isahak, A., Fathurrahman, F., Anhar, A., Mohamad, W. N. A. W., Yusof, W. M. W., & Uphof, N. (2017) A simple, efficient, and farmer-friendly Trichoderma-based biofertilizer evaluated with the SRI rice management system. Organic Agriculture, 8, 1-17, https://doi.org/10.1007/s13165-017-0185-7
Elad, Y. (2000). Biological control of foliar pathogens by means of Trichoderma harzianum and potential mode of action. Crop Protection, 19, 709-714. https://doi.org/10.1016/S0261-2194(00)00094-6
FAO (2020). Food and Agriculture Organization of the United Nations. FAOSTAT. http://www.fao.org/faostat/en/#data/EP
Galletti, S., Burzi, P. L., Cerato, C., Marinello, S., & Sala, E. (2008). Trichoderma as a potential biocontrol agent for Cercospora leaf spot of sugar beet.
BioControl, 53(6), 917–930.
Hanada, R. E., Pomella, A. W. V., Soberanis, W., Loguercio, L. L., & Pereira, J. O. (2009). Biocontrol potential of Trichoderma martiale against black-pod
disease (Phytophthora palmivora) of cacao. Biological Control, 50: 143-149, https://doi.org/10.1016/j.biocontrol.2009.04.005
Haque, M. M., Haque, M. A., Ilias, G. N. M. & Molla, A. H. (2010). Trichoderma-Enriched Biofertilizer: A prospective substitute of inorganic fertilizer for mustard (Brassica campestris) production. The Agriculturists, 8(2), 66-73.
Harman, G. E. (2000). Myths and dogmas of biocontrol: Changes in perceptions derived from research on Trichoderma harzianum T22. Plant Disease, 84, 377-393.
Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderms spp. Phytopathology, 96 (2), 190-194.
Harman, Gary Petzoldt, Rixana Comis, Alfio & Chen, J. (2004). Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Histopathology, 94, 147-53, https://doi.org/10.1094/PHYTO.2004.94.2.147
Hassan, M. (2014). Enhance suppressive effect of compost on soybean rhizoctonia root rot by soil treatment with Trichoderma harzianum. Journal of Plant Physiology and Pathology, 2(2) 1-6.
Hoitink, H. A. J., Madden, L. V., & Dorrance, A. E. (2006). Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Histopathology,96(2), 186-189.
Hossain, S., & Akter, F. (2020). Effects of Trichoderma-enriched biofertilizer and farmyard manure on the growth and yield of brinjal (Solanum melongena L.). Dhaka University Journal of Biological Sciences, 29 (1), 1-8.
Kamala, T., & Indira, S. (2011). Evaluation of indigenous Trichoderma isolates from Manipur as biocontrol agent against Pythium aphanidermatum on common beans. Biotechnology, 1, 217–225, https://doi.org/10.1007/s13205-011-0027-3
Kannangara, S., Dharmarathna, R. M. G. C. S., & Jayarathna, D. L. (2016). Isolation, identification and characterization of Trichoderma species as a potential bio-control agent against Ceratocystis paradoxa. The Journal of Agricultural Sciences, 12(1), 51-62, http://dx.doi.org/10.4038/jas.v12i1.8206
Khan, M. Y., Haque, M. M., Molla, A. H., Rahman, M. M., & Alam, M. Z. (2016). Antioxidant compounds and minerals in tomatoes by Trichoderma enriched biofertilizer and their relationship with the soil environments. Journal of Integrative Agriculture,16(3), 691-703, https://doi.org/10.1016/S2095-3119(16)61350-3
Kucuk, C., & Kivank, M. (2003). Isolation of Trichoderma Spp. and determination of their antifungal, biochemical and physiological features. Turkish Journal of Biology, 27: 247-253.
Kumar, S., Loganathan, V. A., Gupta, R. B., & Barnett, M. O. (2011). An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. Journal of Environmental Management, 92(10), 2504–2512.
Kumar, S., Thakur, M., & Rani, A. (2014). Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. African Journal of Agricultural Research, 9(53), 3838-3852.
Kumar, P., Kumar, V., Goala, M., Singh, J., & Kumar, P. (2021). Integrated use of treated dairy wastewater and agro-residue for Agaricus bisporus mushroom cultivation: Experimental and kinetics studies. Biocatalysis and Agricultural Biotechnology, 32, 101940.
Li, Y., Sun, R., Yu, J., Saravanakumar, K., & Chen, J. 2016. Antagonistic and biocontrol potential of Trichoderma asperellum zjsx5003 against the maize stalk rot pathogen Fusarium graminearum. Indian Journal of. Microbiology, 56, 318–327, https://doi.org/10.1007/s12088-016-0581-9
Marco, S. D., Osti, F., & Cesari, A. (2004). Experiments on the control of esca by Trichoderma. Phytopathologia. Mediterranean, 43, 108-115.
Mastouri, Fatemeh Björkman, Thomas & Harman, Gary. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100, 1213-1221, https://doi.org/10.1094/PHYTO-03-10-0091
Mbarga, J. B., Ten Hoopen, G. M., Kuaté, J., Adiobo, A., Ngonkeu, M. E. L., Ambang, Z., Akoa, A., Tondje, P. R., & Begoude, B. A. D. (2012). Trichoderma asperellum: A potential biocontrol agent for Pythium myriotylum, causal agent of cocoyam (Xanthosoma sagittifolium) root rot disease in Cameroon. Crop Protection, 36, 18–22, https://doi.org/10.1016/j.cropro.2012.02.004
Mohsenzadeh, F., & Shahrokhi, F. (2014). Biological removing of cadmium from contaminated media by fungal biomass of Trichoderma species. Journal of Environmental Health Science and Engineering, 12(1), 1-7.
Nazifa, T. H., Ahmad, M. A., Hadibarata, T., & Aris, A. (2018). Bioremediation of diesel oil spill by filamentous fungus Trichoderma reesei h002 in aquatic environment. International Journal of Integrated Engineering, 10(9), 103-107.
Nicolopoulos-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 1-8, https://dx.doi.org/10.3389%2Ffpubh.2016.00148
Norman, D., Bloomquist, L., Janke, R., Freyenberger, S., Jost, J., & Schurle, B. (2000). The meaning of sustainable agriculture: reflection of some Kansas practitions. American Journal of Alternative Agriculture, 15, 129-136.
Palacios, R. B. O., Aldo, P. B, Luis, H. H, Hipólito Ramírez-Seañez, Ana Tzec, J. A. & Díaz-Félix, Gabriela. (2019). Effect of foliar application of Trichoderma on the quality of tomato fruits grown in different hydroponic substrates. Folia Horticulturae, 31(2), 355-364, https://doi.org/10.2478/fhort-2019-0028
Palanna, K.B., Palaiah, B., & Muthumilan, M. (2007). Effect of manures on growth, sporulation and antifungal activity of Trichoderma viride. Karnataka Journal of Agriculture. Science, 20, 861-863.
Pramod, K. T., & Palakshappa, M. G. (2009). Evaluation of suitable substrates for on farm production of antagonist Trichoderma harzianum. Karnataka Journal of Agriculture. Science, 22, 115-117.
Rahman, M. A., Begum M. F., & Alam, M. F. (2009). Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology, 37(4), 277-285, https://doi.org/10.4489/MYCO.2009.37.4.277
Sabalpara, A. N. (2014). Mass multiplication of biopesticides at farm level. Journal of Mycology and Plant Pathology, 14(44), 1-5.
Sachdev, S., & Singh, R. P. (2020). Trichoderma: A Multifaceted Fungus for Sustainable Agriculture. In: K. Bauddh et al. (Eds.), Ecological and Practical Applications for Sustainable Agriculture, 261-304, https://doi.org/10.1007/978-981-15-3372-3_13
Saksirirat, W., Chareerak, P., & Bunyatrachata, W. (2009). Induced systemic resistance of bio control fungus, Trichoderma sp. against bacterial and gray leaf spot in tomatoes. Asian Journal of Food and Agro industry, 99-104.
Sawant, I. (2014). Trichoderma- Foliar pathogen interactions. The Open Mycology Journal. 8. 58-70, https://doi.org/10.2174/1874437001408010058
Shah, M., & Aafiya, H. (2019). Introductory Chapter: Identification and Isolation of Trichoderma spp. - Their Significance in Agriculture, Human Health, Industrial and Environmental Application. In Trichoderma - The Most Widely Used Fungicide. Retrieved from https://app.dimensions.ai/details/publication/pub.1112012415
Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M. S., Ramakrishna, M., & Landi, M. (2020). Trichoderma: The ''secret'' of a multitalented biocontrol agent. Plants, 9 (762), 1-25, https://doi.org/10.3390/plants9060762
Srivastava, Singh, R. K, Kumar, R. K. N., & Singh, S. (2010). Management of macrophomia disease complex in jute (Corchorus colitorius) by Trichoderma viride. Journal of Biological Control, 24(1), 77–79.
Tewari, L., & Bhanu, C. (2004). Evaluation of agro-industrial wastes for conidia bases incoulum production of bio-control agent: Trichoderma harzanium. Journal of Scientific and Industrial Research, 6, 807–812.
Topolovec-Pintaric, S. (2019). Trichoderma: Invisible partner for visible impact on agriculture. https://doi.org/10.5772/intechopen.83363
Verma, M., Brar, S. K., Tyagi, R. D., Surampalli. R. Y., & Valero. J. R. (2007). Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochemical Engineering Journal, 37: 1-20.
Waghunde, Rajesh Shelake, Rahul & Sabalpara, Ambalal. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11, 1952-1965, https://doi.org/10.5897/AJAR2015.10584
Wang, X., Xu, S., Wu, S., Feng, S., Bai, Z., Zhuang, G., & Zhuang, X., (2018). Effect of Trichoderma viride biofertilizer on ammonia volatilization from an alkaline soil in Northern China. Journal of Environmental Sciences 66, 199–207, http://dx.doi.org/10.1016/j.jes.2017.05.016
Yao, L. F., Teng, Y., Luo, Y. M., Christie, P., Ma, W. T., Liu, F., Wu, Y. G., Luo, Y., & Li, Z. G. (2015). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Trichoderma reesei FS10-C and effect of bioaugmentation on an aged PAH-contaminated soil. Bioremediation Journal, 19, 9–17, http://dx.doi.org/10.1080/10889868.2014.939137
Yazdani, M., Chee, K.Y., Faridah, A., & Soon. G.T. (2010) An in vitro study on the Adsorption, absorption and uptake Capacity of Zn by the Bioremediator Trichoderma atroviride. Environment Asia. 3(1), 53-59.
Yazdani, M., Yap, C. K., Abdullah, F., & Tan, S. G. (2009). Trichoderma atroviride as a bioremediator of Cu pollution: an in vitro study. Toxicological and
Environmental Chemistry,91(7), 1305–1314.
Published
How to Cite
Issue
Section
Copyright (c) 2021 Agriculture and Environmental Science Academy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.