Genotypic variability and genetic parameters for root yield, dry matter and related traits of cassava in the Guinea Savannah ecological zone of Ghana
Abstract
The aim of this study was to assess the agronomic performance and genetic parameters governing storage root yield and related traits in cassava genotypes in order to identify superior genotypes. The study involved 18 elite cassava genotypes which were arranged in a randomized complete block design with three replications and assessed for storage root yield and yield components (12 months after planting) in the Guinea savannah ecology of Ghana for three seasons. Analysis of variance indicated significant (p < 0.05) genotype and year main effects for fresh and dry root yields, dry matter content, starch yield and harvest index. Genotype × year effect was significant (p < 0.05) for fresh root yield, dry root yield and starch yield. Estimates of the variance components revealed greater genotypic influence for starch yield, fresh and dry root yields implying the potential for genetic gain with selection for these traits among the genotypes. Relatively high (69 %) broad sense heritability estimate was observed for dry storage root yield indicating the depth of genetic influence. Path coefficient analysis revealed a direct positive effect of dry matter content on dry storage root yield whilst dry storage root yield had direct positive effect on starch yield suggesting the possibility of indirect selection for starch yield through dry storage root yield. The study revealed ample genotypic variability among the cassava genotypes to warrant selection. Four genotypes, IBA 070134, IBA 419, IBA 950289 and IBA 980581 were identified for high and stable fresh and dry root yields for multilocational testing.
Keywords:
Adaptability, Agronomic performance, Dry matter content, Genotype stability index, Starch yieldDownloads
References
Adjebeng-Danquah, J., Asante, I. K., Manu-Aduening, J., Agyare, R. Y., Gracen, V. E., & Offei, S. K. (2020). Genotypic variability in some morpho-physiological traits in different environments and their relationship with cassava (Manihot esculenta Crantz) root yield. International Journal of Agronomy, 1–19.
Adjebeng-Danquah, J., Acheremu, K., Asante, S. K., Kusi, F., & Osei, C. (2012). Evaluation of early bulking cassava accessions for high yield potential for the Guinea savanna Zone of Ghana. Ghana Journal of Agricultural Science, 45(2), 61–70.
Adjebeng-Danquah, J., Gracen, V. E., Offei, S. K., Asante, I. K., & Manu-Aduening, J. (2016). Genetic variability in storage root bulking of cassava genotypes under irrigation and no irrigation. Agriculture and Food Security, 5, 1–12.
Adjebeng-Danquah, J., Manu-Aduening, J., Gracen, V. E., Asante, I. K., & Offei, S. K. (2017). AMMI stability analysis and estimation of genetic parameters for growth and yield components in cassava in the forest and Guinea savannah ecologies of Ghana. International Journal of Agronomy, 1–10.
Adu-Gyamfi, R., Osei, C., & Anadumba, E. (2016). Yield and earliness in bulking of some introduced cassava genotypes Under moist savanna. UDS International Journal of Development, 3(1), 20–28.
Adu, G. B., Akromah, R., Abdulai, M. S., Obeng-Antwi, K., Alidu, H., & Tengan, K. M. L. (2016). Trait association for improved grain yield of extra-early maturing maize hybrids evaluated in the forest and transitional zones of Ghana. Australian Journal of Crop Science, 10(8), 1127–1135.
Aghogho, C. I., Eleblu, S. J. Y., Bakare, M. A., Kayondo, I. S., Asante, I., Parkes, E. Y., Kulakow, P., Offei, S. K., & Rabbi, I. (2022). Genetic variability and genotype by environment interaction of two major cassava processed products in multi-environments. Frontiers in Plant Science, 17, 1 – 17.
Agunbiade, S. O., & Ighodaro, O. M. (2010). Variation in the physical, chemical and physico-functional properties of starches from selected cassava cultivars. New York Science Journal, 3(4), 48–53.
Agyemang, I., & Abdul-korah, R. (2014). Strategies to combat desertification in Northern Region of Ghana: The role of Environmental Protection Agency. Physical Sciences Research International, 2(2), 35–43.
Alua, M. A., Peprah, K., Thomas, G., & Achana, W. (2018). Climate change implications for crop farming in Ghana’s semi -arid Guinea savannah. International Journal of Development and Sustainability, 7(9), 2334–2349.
Amelework, A. B., Bairu, M. W., Marx, R., Laing, M., & Venter, S. L. (2023). Genotype × environment interaction and stability analysis of selected cassava cultivars in South Africa. Plants, 12(13), 1-13.
Amelework, A. B., & Bairu, M. W. (2022). Advances in genetic analysis and breeding of cassava (Manihot esculenta Crantz): A Review. Plants, 11(1617), 1-19.
Ayetigbo, O., Latif, S., Abass, A. & Müller, J. (2018). Comparing characteristics of root, flour and starch of biofortified yellow-flesh and white-flesh cassava variants, and sustainability considerations: A review. Sustainability, 10(9), 1–32.
Baafi, E. & Safo-Kantanka, O. (2008). Agronomic evaluation of some local elite and released cassava varieties in the forest and transitional ecozones of Ghana. Asian Journal of Agricultural Research, 2(1), 32–36.
Bakare, M. A., Kayondo, S. I., Aghogho, C. I., Wolfe, M. D., Parkes, E. Y., Kulakow, P., Egesi, C., Rabbi, I. Y., & Jannink, J. L. (2022). Exploring genotype by environment interaction on cassava yield and yield related traits using classical statistical methods. PLoS One, 17(7), 1–24.
Bose, L. K., Jambhulkar, N. N., Pande, K., & Singh, O. N. (2014). Use of AMMI and other stability statistics in the simultaneous selection of rice genotypes for yield and stability under direct-seeded conditions. Chilean Journal of Agricultural Research, 74(1), 3–9.
Ceballos, H., Rojanaridpiched, C., Phumichai, C., Becerra, L. A., Kittipadakul, P., Iglesias, C. & Gracen, V. E. (2020). Excellence in cassava breeding: Perspectives for the future. Crop Breeding, Genetics and Genomics, 2(2), 1–31.
Ceballos, H., Iglesias, C. A., Pérez, J. C., & Dixon, A. G. O. (2004). Cassava breeding: Opportunities and challenges. Plant Molecular Biology, 56, 503–516.
Ceballos, H., Kulakow, P., & Hershey, C. (2012). Cassava Breeding: Current Status, Bottlenecks and the Potential of Biotechnology Tools. Tropical Plant Biology, 5, 73–87.
Cobb, J. N., Juma, R. U., Biswas, P. S., Arbelaez, J. D., Rutkoski, J., Atlin, G.,·Hagen, T., Quinn, M. & Ng, E. H. (2019). Enhancing the rate of genetic gain in public sector plant breeding programs: lessons from the breeder’s equation. Theoretical and Applied Genetics, 132, 627–645.
Dankwa, K. O., & Peprah, B. B. (2019). Industrialization of cassava sector in Ghana: Progress and the role of developing of high starch cassava varieties. Ghana Journal of Agricultural Science, 54(2), 79–85.
Diniz, R. P., & Oliveira, E. J. (2019). Genetic parameters, path analysis and indirect selection of agronomic traits of cassava germplasm. Anais Da Academia Brasileira de Ciencias, 91(3), 1–11.
Ebem, E. C., Afuape, S. O., Chukwu, S. C., & Ubi, B. E. (2021). Genotype × environment interaction and stability analysis for root yield in sweet potato [Ipomoea batatas (L.) Lam]. Frontiers in Agronomy, 3, 1–14.
Eke, J., Achinewhu, S. C., Sanni, L., Barimalaa, I. S., Maziya-Dixon, B. & Dixon, A. (2007). Seasonal variations in the chemical and functional properties of starches from local and improved cassava varieties in high rainfall region of Nigeria. Journal of Food, Agriculture and Environment, 5(3–4), 36–42.
El-Sharkawy, M. A., & Cadavid, L. F. (2002). Response of cassava to prolonged water stress imposed at different stages of growth. Experimental Agriculture, 38(3), 333–350.
El-Sharkawy, M. A. (2004). Cassava biology and physiology. Plant Molecular Biology, 56(4), 481–501.
El-Sharkawy, M. A. (2007). Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments. Brazilian Journal of Plant Physiology, 19(4), 257–286.
EPA. (2003). National action programme to combat drought and desertification. Environmental Protection Agency. Accra-Ghana. Final Report. 160 pp.
Ewa, F., Nwofia, E., Egesi, C., Olasanmi, B., & Okogbenin, E. (2017). Genetic variability, heritability and variance components of some yield and yield related traits in second backcross population (BC2) of cassava. African Journal of Plant Science, 11(6), 185–189.
FAO-UNESCO. (1977). FAO-UNESCO soil map of the world, 1:5000000. Africa. FAO Soil Bulletin, VI(1), 299 pp.
Farshadfar, E., Mahmodi, N., & Yaghotipoor, A. (2011). AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.). Australian Journal of Crop Science, 5(13), 1837–1844.
Fukuda, W. M. G., Guevara, C. L., Kawuki, R., & Ferguson, M. E. (2010). Selected morphological and agronomic descriptors for the characterization of cassava. International Institute of Topical Agriculture (IITA), Ibadan, Nigeria. 19 pp.
Haldavankar, P. C., Joshi, G. D., Bhave, S. G., Klandekar, R. G., & Sawant, S. S. (2009). Stability of yield and yield attributing phenotypic characters in sweet potato. Journal of Root Crops, 35(1), 28–35.
Hernández-Carmona, F., Morales-Matos, Y., Lambis-Miranda, H. & Pasqualino, J. (2017). Starch extraction potential from plantain peel wastes. Journal of Environmental Chemical Engineering, 5(5), 4980 - 4985 .
Hillocks, R. J. (2002). Cassava in Africa. in: Hillocks, R. J., Thresh, J. M. & Bellotti, A. (Eds.), Cassava: utilisation CABI Publishing: Oxon UK. pp. 41–54.
Koopmans, A. (2005). Biomass energy demand and supply for South and South-East Asia - Assessing the resource base. Biomass and Bioenergy, 28(2), 133–150.
Lenis, J. I., Calle, F., Jaramillo, G., Perez, J. C., Ceballos, H. & Cock, J. H. (2006). Leaf retention and cassava productivity. Field Crops Research, 95(2–3), 126–134.
Li, M., Liu, Y., Wang, C., Yang, X., Li, D., Zhang, X., Xu, C., Zhang, Y., Li, W., & Zhao, L. (2020). Identification of traits contributing to high and stable yields in different soybean varieties across three Chinese latitudes. Frontiers in Plant Science, 10(1642), 1–14.
Lopez-Diago, L. F., Castillo, K., Vidal, M. V., Pasqualino, J., Meza-Castellar, P., & Lambis-Miranda, H. A. (2018). Evaluation of the production of starch from bitter cassava (Manihot utilissima) using different methodologies. Chemical Engineering Transactions, 65, 613–618.
Maraphum, K., Saengprachatanarug, K., Wongpichet, S., Phuphuphud, A., Sirisomboon, P., & Posom, J. (2021). Modified specific gravity method for estimation of starch content and dry matter in cassava. Heliyon, 7(7), 1–10.
Ntawuruhunga, P., & Dixon, A. (2010). Quantitative variation and interrelationship between factors influencing cassava yield. Journal of Applied Biosciences, 26, 1594–1602.
Nuwamanya, E., Baguma, Y., Kawuki, R. S., & Rubaihayo, P. R. (2009). Quantification of starch physicochemical characteristics in a cassava segregating population. African Crop Science Journal, 16(3), 191–202.
Okeleye, K. A., Ikeorgu, J. E. G., Melifonwu, A., Aihou, K., Maroya, N. G., Dosoo, E., Awah, E. T., Tumenteh, A., & Salau, R. A. (2001). Cassava-based cropping systems and use of inputs in different ecological zones of West and Central Africa. African Journal of Root Crops, 4(2), 13–17.
Okogbenin, E., Setter, T. L., Ferguson, M., Mutegi, R., Ceballos, H., Olasanmi, B., & Fregene, M. (2013). Phenotypic approaches to drought in cassava: Review. Frontiers in Physiology, 4(93), 1-15.
Oliveira, C. R. S., Borel, J. C., Pereira, D. A., Carvalho, B. P., Medrado, E. S., Ishikawa, F. H., & Oliveira, E. J. (2021). Genetic parameters and path analysis for root yield of cassava under drought and early harvest. Crop Breeding and Applied Biotechnology, 21(3), 1–8.
Oliveira, E. J., Aidar, S. T., Morgante, C. V., Chaves, A. R. M., Cruz, J. L., & Coelho Filho, M. A. (2015). Genetic parameters for drought-tolerance in cassava. Pesquisa Agropecuária Brasileira, 50(3), 233–241.
Olivoto, T., Lúcio, A. D., Silva, J. A., Marchioro, V. S., Souza, V. Q., & Jost, E. (2019). Mean performance and stability in multienvironment trials I: Combining features of AMMI and BLUP techniques. Agronomy Journal, 111, 2949–2960.
Omodamiro, R. M., Iwe, M. O., & Ukpabi, U. J. (2007). Pasting and functional properties of lafun and starch processed from some improved cassava genotypes in Nigeria. Nigerian Food Journal, 25(2), 122–129.
Osei, C., Bagamsah, S. K., Asante, S. K., Alhassan, A. Y., Acheremu, K., Dei, D., Sallah, Y., Wilson, K., Eledi, E., Wawula, M., Abukari, S., Kakraba, M., Dixon, A. G. O., Ilona, P., Asiedu, R., & Ofori, F. (2002). Evaluation and selection of IITA-Improved cassava genotypes for cultivation in semi-arid Guinea savannah zone of Ghana. A report presented to the National Variety Release and Registration Committee of Ghana. 33 pp.
Osei, M. K., Annor, B., Adjebeng-Danquah, J., Danquah, A., Danquah, E., Blay, E., & Adu-Dapaah, H. (2018). Genotype × environment interaction: A prerequisite for tomato variety development. in: Nyaku S.T. and Danquah A. (Eds.),
Recent advances in tomato breeding and production. Intechopen Limited, London, UK. pp. 93-113.
Payne, R. W., Murray, D. A., Harding, S. A., Baird, D. B., & Soutar, D. M. (2009). Genstat for Windows (12th Edition) Introduction. VSN International, Hemel Hempstead. VSN International, Hemel Hempstead.
Prasannakumari, V., Nair, A. G. H. & Mohan, C. (2021). Identification of quantitative trait loci (QTLs) conferring dry matter content and starch content in cassava (Manihot esculenta Crantz). American Journal of BioScience, 9, 1–9.
Purchase, J. L., Hatting, H., & van Deventer, C. S. (2000). Genotype × environment interaction of winter wheat (Triticum aestivum L .) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil, 17(3), 101–107.
Rao, B. B., Swami, D. V., Ashok, P., Kalyana Babu, B., Ramajayam, D., & Sasikala, K. (2017). Correlation and path coefficient analysis of cassava (Manihot esculenta Crantz) genotypes. International Journal of Current Microbiology and Applied Sciences, 6(9), 549–557.
Salgotra, R. K., & Chauhan, B. S. (2023). Genetic diversity, conservation, and utilization of plant genetic resources. Genes, 14, 1–20.
Silva, P. P., Sousa, M. B., & Oliveira, E. J. (2019). Prediction models and selection of agronomic and physiological traits for tolerance to water deficit in cassava. Euphytica, 215(4), 1–18.
Swarup, S., Cargill, E. J., Crosby, K., Flagel, L., Kniskern, J., & Glenn, K. C. (2021). Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61(2), 839–852.
Teye, E., Asare, P. A., Amoah, R. S., & Tetteh, J. P. (2011). Determination of the dry matter content of cassava (Manihot esculenta Crantz) tubers using specific gravity method. APRN Journal of Agricultural and Biological Science, 6(11), 23–28.
Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. Frontiers in Physiology, 3(347), 1–26.
Tumuhimbise, R., Melis, R., Shanahan, P., & Kawuki, R. (2014). Genotype × environment interaction effects on early fresh storage root yield and related traits in cassava. Crop Journal, 2(5), 329-337.
Tumwesigye, K. S., Sousa, A. R., Oliveira, J. C., & Sousa-Gallagher, M. J. (2017). Evaluation of novel bitter cassava film for equilibrium modified atmosphere packaging of cherry tomatoes. Food Packaging and Shelf Life, 13, 1–14.
Uchendu, K., Njoku, D.N., Ikeogu, U.N., Dzidzienyo, D., Tongoona, P., Offei, S., & Egesi, C. (2022). Genotype-by-environment interaction and stability of root mealiness and other organoleptic properties of boiled cassava roots. Scientific Reports, 12, 1-11.
Varshney, R. K., Bohra, A., Yu, J., Graner, A., Zhang, Q., & Sorrells, M. E. (2021). Designing future crops: genomics-assisted breeding comes of age. Trends in Plant Science, 26(6), 631 – 649.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Agriculture and Environmental Science Academy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.