Evaluation of local substrates as rice straw alternatives for oyster mushroom (Pleurotus ostreatus) cultivation in resource-constrained Darchula, Nepal

Krishna Raj Pandey 1 , Yagya Raj Joshi 2 , Sharwari Bhattarai 3 , Dharmendra Joshi 4 , Sobita Subedi 5 , Prakash Kumar Pant 6 , Sushil Khatri 7

1   Agriculture and Forestry University (AFU), Rampur, Chitwan, NEPAL
2   Agriculture and Forestry University (AFU), Rampur, Chitwan, NEPAL
3   College of Natural Resource Management, Marin, Kapilakot, Sindhuli, NEPAL
4   College of Natural Resource Management, Marin, Kapilakot, Sindhuli, NEPAL
5   Agriculture and Forestry University (AFU), Rampur, Chitwan, NEPAL
6   Agriculture Knowledge Center (AKC), Darchula, NEPAL
7   Agriculture and Forestry University (AFU), Rampur, Chitwan, NEPAL

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2023.0804012

doi

Abstract

Oyster mushroom cultivation, though cost-effective, faces constraints due to seasonality and substrate availability. An experimental study was conducted in the resource-constrained Darchula district of Nepal from February to May 2022. The aim was to identify and recommend economically sustainable alternatives to rice straw for oyster mushroom production using local substrates in regions with limited resources. Six treatments; rice straw (T1), banana leaves and pseudostem (T2), maize cob (T3), sawdust (T4), grass (Eulaliopsis sp.) (T5), and spent mushroom substrates (T6); were employed in a completely randomized design with four replications. Statistical analysis of growth and yield parameters revealed significant results (P values ranging from P>0.001 to P>0.05) across all parameters. The maize cob treatment exhibited a shorter spawn run period (20.50 days) and the earliest pinhead formation (25 days). The highest total yield (3.14 kg) across three flushes was obtained from paddy straw, followed by T2 and T5, yielding 2.05 kg and 1.43 kg, respectively. Sawdust, despite its larger stalk (1.23 cm) and pileus diameter (7.72 cm), had the lowest production (0.63 kg). Maximum biological efficiency was recorded for T1 (139.63%), followed by T2, T5, and T3, respectively. Economically, T1 resulted in the highest gross margin per 10 kg of substrate (NRs.1845.22) and the highest B:C ratio (2.51), followed by T5 and T2. These findings highlight the promise of locally abundant substrates such as banana leaves, pseudo stems, Eulaliopsis, and maize cobs as economically viable alternatives to rice straw in regions with limited straw availability or unsuitable climates for rice cultivation.

Keywords:

Biological efficiency, Pine sawdust, Pinhead formation, Spawn run, Spent mushroom substrate

Downloads

Download data is not yet available.

References

Ahmed, S., A., Kadam, J. A., Mane, V. P., Patil, S. S., & Baig, M. M. V. (2009). Biological efficiency and nutritional contents of Pleurotus florida (Mont.) Singer cultivated on different agro-wastes. Nature and Science, 7(1), 44–48.

Ali, N., Khairudin, H., Mohamed, M., & Hassan, O. (2018). Cultivation of Pleurotus ostreatus on oil palm fronds mixed with rubber tree sawdust. Chemical Engineering Transactions, 63: 547–552, https://doi.org/10.3303/CET1863092

Ashraf, J., Ali, M. A., Ahmad, W., Ayyub, C. M., & Shafi, J. (2013). Effect of different substrate supplements on oyster mushroom (Pleurotus spp.) production. Food Science and Technology, 1(3): 44–51, https://doi.org/10.13189/fst.2013.010302

Bellettini, M. B., Fiorda, F. A., Maieves, H. A., Teixeira, G. L., Ávila, S., Hornung, P. S., Júnior, A. M., & Ribani, R. H. (2019). Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, 26(4), 633–646, https://doi.org/10.1016/j.sjbs.2016.12.005

Besufekad, Y., Mekonnen, A., Girma, B., Daniel, R., Tassema, G., Melkamu, J., Asefa, M., Fikiru, T., & Denboba, L. (2020). Selection of appropriate substrate for production of oyster mushroom (Pleurotus ostreatus). Journal of Yeast and Fungal Research, 11(1), 15–25, https://doi.org/10.5897/JYFR2019.0187

Bhandari, R., Dhungana, R., & Neupane, P. (2021). Benefit–cost ratio analysis of Pleurotus mushroom cultivation using different substrates in Campus of Live Sciences, Dang, Nepal. Food and Agribusiness Management, 2(2): 85–87, http://doi.org/10.26480/fabm.02.2021.85.87

Buah, J. N., Van der Pu, G. C., Bediako, E. A., Abole, E. A., & Showemimo, F. (2010). The growth and yield performance of oyster mushroom (Pleurotus ostreatus) on different substrates. Biotechnology (Faisalabad), 9(3), 338–342, https://doi.org/10.3923/biotech.2010.338.342

Castagnetti, F., Bhatta, J., & Greene, A. (2021). An offering of grain: The agricultural and spiritual cycle of a food system in the Kailash Sacred Landscape, Darchula, Far Western Nepal. Frontiers in Sustainable Food Systems, 5: article 646719. https://doi.org/10.3389/fsufs.2021.646719

Chang, A. C. (2018). Genetics and breeding of edible mushrooms S.-T. Chang, J. A. Buswell & P. G. Miles (Eds.). Routledge.

https://doi.org/10.1201/9780203753682

Chang, S. T., & Quimio, T. H. (Eds.). (1982). Tropical mushrooms: Biological nature and cultivation methods. Chinese University Press.

Chukwurah, N. F., Eze, S. C., Chiejina, N. V., Onyeonagu, C. C., & Okezie, C. E. A. (2013). Correlation of stipe length, pileus width and stipe girth of oyster mushroom (Pleurotus ostreatus) grown in different farm substrates. Journal of Agricultural Biotechnology and Sustainable Development, 5(3), 54–60, https://doi.org/10.5897/JABSD2013.0197

Cunha Zied, D., Sánchez, J. E., Noble, R., & Pardo-Giménez, A. (2020). Use of spent mushroom substrate in new mushroom crops to promote the transition towards A circular economy. Agronomy, 10(9): article 1239, https://doi.org/10.3390/agronomy10091239

Daba, A., Kabeil, S., Botros, W., & El-Saadani, M. (2008). Production of mushroom (Pleurotus ostreatus) in Egypt as a source of nutritional and medicinal food. World Journal of Agricultural Sciences, 4(5), 630–634.

Deepalakshmi, K., & Sankaran, M. (2014). Pleurotus ostreatus: An oyster mushroom with nutritional and medicinal properties. Journal of Biochemical Technology, 5(2), 718–726.

Dubey, D., Dhakal, B., Dhami, K., Sapkota, P., Rana, M. et al. (2019). Comparative study on effect of different substrates on yield performance of oyster mushroom. Global journal of biology, agriculture & Health Sciences, 8(1), 1–7.

Gateri, M. W., Muriuki, A. W., Waiganjo, M. W., & Ngeli, P. (2009). Cultivation and commercialization of edible mushrooms in Kenya: A review of prospects and challenges for smallholder production. Acta Horticulturae, 806(806), 473–480, https://doi.org/10.17660/ActaHortic.2009.806.59

Girmay, Z., Gorems, W., Birhanu, G., & Zewdie, S. (2016). Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates. AMB Express, 6(1), 87. https://doi.org/10.1186/s13568-016-0265-1

Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. John Wiley & Sons.

Gume, B., Muleta, D., & Abate, D. (2013). Evaluation of locally available substrates for cultivation of oyster mushroom (Pleurotus ostreatus) in Jimma, Ethiopia. African Journal of Microbiology Research, 7(20), 2228–2237, https://doi.org/10.5897/AJMR12.895

Hasan, N., Rahman, S., Nigar, S., Bhuiyan, A., & Ara, N. (2010). Performance of oyster mushroom (Pleurotus ostreatus) on different pretreated substrates. International Journal of Sustainable Crop Production, 5(4), 16–24.

Hoa, H. T., Wang, C. L., & Wang, C. H. (2015). The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology, 43(4), 423–434. https://doi.org/10.5941/MYCO.2015.43.4.423

Iqbal, B., Khan, H., Saifullah, I. K., Shah, B., Naeem, A., Ullah, W., & Ahmed, N. (2016). Substrates evaluation for the quality, production and growth of oyster mushroom (Pleurotus florida Cetto). Journal of Entomology and Zoology Studies, 4(3), 98–107.

Jongman, M., Khare, K. B., & Loeto, D. (2018). Oyster mushroom cultivation at different production systems: European. Journal of Biomedical and Pharmaceutical Sciences, 5(5), 72–79.

Lee, S. W., & Cho, Y. S. (2021). Historical and current perspective of oyster mushroom (Pleurotus ostreatus) cultivation in South Korea. Asian Journal of Advances in Agricultural Research, 17(1), 33–41, https://doi.org/10.9734/ajaar/2021/v17i130188

Mensah, E. O. (2015). Comparative studies on growth and yield of Pleurotus ostreatus on different types of substrates. MSc. https://ir.knust.edu.gh/bitstream/123456789/8004/1/final%20full%2C%202015.pdf. Kwame Nkrumah University of Science and Technology.

Miles, P. G., & Chang, S. (1997). Mushroom Biology: Concise Basics and current developments. https://files.shroomery.org/attachments/24154074-Mushroom%20Biology%20Concise%20Basics%20And%20Current%20Developments%20-20Philip%20G.%20Miles,%20Shu-Ting%20Chang.pdf. World Scientific Publishing.

Mondal, S., Rehana, J., Noman, M., & Adhikary, S. (2010). Comparative study on growth and yield performance of oyster mushroom (Pleurotus florida) on different substrates. Journal of the Bangladesh Agricultural University, 8(2), 213–220, https://doi.org/10.3329/jbau.v8i2.7928

Muswati, C., Simango, K., Tapfumaneyi, L., Mutetwa, M., & Ngezimana, W. (2021). The effects of different substrate combinations on growth and yield of oyster mushroom (Pleurotus ostreatus). International Journal of Agronomy, 1–10, https://doi.org/10.1155/2021/9962285

Neupane, S., Thakur, V., Bhatta, B., Pathak, P., Gautam, B. B., & Aryal, L. (2018). Performance of different substrates on the production of oyster mushrooms (Pleurotus florida) at Gokuleshwor, Darchula. International Journal of Scientific and Research Publications, 8(6), 231–240, https://doi.org/10.29322/IJSRP.8.6.2018.p7832

Oei, P., & Maas, M. (2003). Mushroom cultivation: Appropriate Technology for mushroom growers (3rd edi). Backhuys Publishers.

Onyeka, E. U., Udeogu, E., Umelo, C., & Okehie, M. A. (2018). Effect of substrate media on growth, yield and nutritional composition of domestically grown oyster mushroom (Pleurotus ostreatus). African Journal of Plant Science, 12(7), 141–147, https://doi.org/10.5897/AJPS2016.1445

Pathmashini, L., Arulnandhy, V., & Wijeratnam, R. W. (2008). Cultivation of oyster mushroom (Pleurotus ostreatus) on sawdust. Ceylon Journal of Science (Biological Sciences), 37(2), 177–182, https://doi.org/10.4038/cjsbs.v37i2.505

Philippoussis, A., & Diamantopoulou, P. (2011). Agro-food industry wastes and agricultural residues conversion into high value products by mushroom cultivation. In Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7) (pp. 4–7). France.

Piska, K., Sułkowska-Ziaja, K., & Muszyńska, B. (2017). Edible mushroom Pleurotus ostreatus (oyster mushroom): Its dietary significance and biological activity. Acta Scientiarum Polonorum: Hortorum Cultus, 16(1), 151–161.

Ponmurugan, P., Sekhar, Y. N., & Sreesakthi, T. R. (2007). Effect of various substrates on the growth and quality of mushrooms. Pakistan Journal of Biological Sciences, 10(1), 171–173, https://doi.org/10.3923/pjbs.2007.171.173

Qingfeng, W. (1993). The exploitation value of Chinese alpine rush. Journal of Natural Resources, 8(4), 307–313, https://doi.org/10.11849/zrzyxb.1993.04.003

Rabiya. (2019). Edible mushrooms | Definition | Types [Online]. Retrieved April 13, 2023 from https://ibiologia.com/edible-mushrooms-definition-types/

Rangel, J., Leal, H., Palacios-Mayorga, S., Sánchez, S., Ramirez, R., & Méndez-García, T. (2006). Coconut fiber as casing material for mushroom production. Terra Latinoamericana, 24(2), 207–213.

Rani, P., Kalyani, N., & Prathiba, K. (2008). Evaluation of lignocellulosic wastes for production of edible mushrooms. Applied Biochemistry and Biotechnology, 151(2–3), 151–159, https://doi.org/10.1007/s12010-008-8162-y

Raut, J. K. (2019). Current status, challenges and prospects of mushroom industry in Nepal. International Journal of Agricultural Economics, 4(4), 154–160. https://doi.org/10.11648/j.ijae.20190404.13

Sadler, M. (2003). Nutritional properties of edible fungi. Nutrition Bulletin, 28(3), 305–308, https://doi.org/10.1046/j.1467-3010.2003.00354.x

Sahu, S. C., Rout, N. C., & Dhal, N. K. (2010). Ethnobotany of Eulaliopsis binata (Retz.) Hubbard – Poaceae. In Orissa, Eastern India: Cultivation practice, economics and prospects. Journal of Advances in Developmental Research, 1(2), 155–160.

Samuel, A. A., & Eugene, T. L. (2012). Growth performance and yield of oyster mushroom (Pleurotus ostreatus) on different substrates composition in Buea south West Cameroon. Science Journal of Biochemistry, 139. https://doi.org/10.7237/sjbch/139

Sánchez, C. (2010). Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85(5), 1321–1337, https://doi.org/10.1007/s00253-009-2343-7

Sanjel, P., Shrestha, R. K., & Shrestha, J. (2021). Performance of oyster mushroom (Pleurotus ostreatus) grown on different finger millet husk substrates. Journal of Agriculture and Natural Resources, 4(1), 291–300, https://doi.org/10.3126/janr.v4i1.33370

Shah, Z. A. S., Ashraf, M. A., & Ishtiaq, M. I. C. (2004). Comparative study on cultivation and yield performance of oyster mushroom (Pleurotus ostreatus) on different substrates (wheat straw, leaves, sawdust). Pakistan Journal of Nutrition, 3(3), 158–160, https://doi.org/10.3923/pjn.2004.158.160

Shahbandeh, M. (2023). Global leading producers of mushrooms and truffles. Retrieved March 22, 2023 from https://www.statista.com/statistics/1018477/leading-mushrooms-producing-countries/

Sharma, S., Yadav, R. K. P., & Pokhrel, C. P. (2013). Growth and yield of oyster mushroom (Pleurotus ostreatus) on different substrates. Journal on New Biological Reports, 2(1), 03–08.

Sitaula, H. P., Dhakal, R., Dc, G., & Kalauni, D. (2018). Effect of various substrates on growth and yield performance of oyster mushroom (Pleurotus ostreatus) in Chitwan, Nepal. International Journal of Applied Sciences and Biotechnology, 6(3), 215–219, https://doi.org/10.3126/ijasbt.v6i3.20859

Tan, K. K. (1981). Cotton waste as a good substrate for cultivation of Pleurotus ostreatus, The Oyster Mushroom. Mushroom Science, 11(1), 705–710.

Tavarwisa, D. M., Govera, C., Mutetwa, M., & Ngezimana, W. (2021). Evaluating the suitability of baobab fruit shells as substrate for growing oyster mushroom (Pleurotus ostreatus). International Journal of Agronomy, 2021: 1–7, https://doi.org/10.1155/2021/6620686

Tsegaye, Z. (2015). Growing of oyster mushrooms using agricultural residues at Ethiopian Biodiversity Institute Addis Ababa, Ethiopia. Academic Journal of Microbiology Research, 3(1), 14–21, https://doi.org/10.15413/ajmr.2015.0104

Tsegaye, Z., & Tefera, G. (2017). Cultivation of oyster mushroom (Pleurotus ostreatus Kumm, 1871) using agro-industrial residues. Journal of Applied Microbiological Research, 1(1), 1–6.

Vajna, B., Nagy, A., Sajben, E., Manczinger, L., Szijártó, N., Kádár, Z., Bordás, D., & Márialigeti, K. (2010). Microbial community structure changes during oyster mushroom substrate preparation. Applied Microbiology and Biotechnology, 86(1), 367–375, https://doi.org/10.1007/s00253-009-2371-3

Yang, W., Guo, F., & Wan, Z. (2013). Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi Journal of Biological Sciences, 20(4), 333–338, https://doi.org/10.1016/j.sjbs.2013.02.006

Zhou, S., Ma, F., Zhang, X., & Zhang, J. (2016). Carbohydrate changes during growth and fruiting in Pleurotus ostreatus. Fungal Biology, 120(6–7), 852–861. https://doi.org/10.1016/j.funbio.2016.03.007

Published

2023-12-25

How to Cite

Pandey, K. R., Joshi, Y. R., Bhattarai, S., Joshi, D., Subedi, S., Pant, P. K., & Khatri, S. (2023). Evaluation of local substrates as rice straw alternatives for oyster mushroom (Pleurotus ostreatus) cultivation in resource-constrained Darchula, Nepal. Archives of Agriculture and Environmental Science, 8(4), 535-544. https://doi.org/10.26832/24566632.2023.0804012

Issue

Section

Research Articles