A review on molecular breeding techniques: Crucial approach in livestock improvement
Abstract
For underdeveloped countries, molecular breeding (MB) has a lot of promise. However, the implementation in developing countries is far from uniform. Livestock improvement programs aim to improve the genetics of domesticated animal populations by selecting males and females who, when mated, will produce progeny that perform better than the current generation's average. The amount of genetic progress made through conventional selection and breeding methods for quantitative traits in livestock is successful, but limitations such as routinely recording phenotypes, animal sacrifice for meat quality traits, recording in particular sex for sex-limited traits, and so on the limit the amount of genetic progress made through conventional selection and breeding methods. Marker-assisted selection (MAS), genome-wide selection (GWS), marker-assisted recurrent selection (MARS), and genome-wide sequencing (GS) are examples of modern breeding procedures. Molecular genetics technology may provide a technique to choose breeding animals at an early age (even embryos), to select for a wide variety of features and to improve the accuracy of forecasting an individual's mature phenotype. This paper examines the challenges and potential of applying molecular breeding techniques to improve livestock in developing countries.
Keywords:
Conventional selection, MAS, MARS, Phenotype, Quantitative traitsDownloads
References
Abdullah, R., Wan-Khadijah, W., & Rahman, A. (2008). Estrus synchronization and superovulation in goats: a review. Journal of Biological Sciences, 8(7), 1129-1137.
Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications, 9(1), 1911.
Ai, H., Fang, X., Yang, B., Huang, Z., Chen, H., Mao, L., He, W. (2015). Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics, 47(3), 217-225.
Andersson, L. (2001). Genetic dissection of phenotypic diversity in farm animals. Nature Reviews Genetics, 2(2), 130-138.
Ashebir, G., Birhanu, A., & Gugsa, T. (2016). Status of artificial insemination in Tigray Regional State,“Constraints and acceptability under field condition”. Journal of Dairy, Veterinary and Animal Research, 3(3), 00078.
Ataman, M. B., & Aköz, M. (2006). GnRH-PGF2α and PGF2α-PGF2α synchronization in Akkaraman cross-bred sheep in the breeding season. Bulletin of the Veterinary Institute in Pulawy, 50(1), 101-104.
Atienza, S., Satovic, Z., Petersen, K., Dolstra, O., & Martin, A. (2003). Influencing combustion quality in Miscanthus sinensis Anderss.: identification of QTLs for calcium, phosphorus and sulphur content. Plant Breeding, 122(2), 141-145.
Babar, M. E., Hussain, T., & Wajid, A. (2013). Latest biotechnological approaches for efficient buffalo production. Buffalo Bulletin, 32, 142-150.
Bacci, M. (2007). A brief overview of transgenic farm animals. Veterinary Research Communications, 31(1), 9-14.
Baguisi, A., Behboodi, E., Melican, D. T., Pollock, J. S., Destrempes, M. M., Cammuso, C., Midura, P. (1999). Production of goats by somatic cell nuclear transfer. Nature Biotechnology, 17(5), 456-461.
Bedell, V. M., Wang, Y., Campbell, J. M., Poshusta, T. L., Starker, C. G., Krug II, R. G., Leung, A. Y. (2012). In vivo genome editing using a high-efficiency TALEN system. Nature, 491(7422), 114-118.
Bernardo, R., & Yu, J. (2007). Prospects for genomewide selection for quantitative traits in maize. Crop Science, 47(3), 1082-1090.
Bertram, H. C., Karlsson, A. H., & Andersen, H. J. (2003). The significance of cooling rate on water dynamics in porcine muscle from heterozygote carriers and non-carriers of the halothane gene—a low-field NMR relaxation study. Meat Science, 65(4), 1281-1291.
Bhembe, N. B. (2016). Molecular Characterization of Mycobacterium Bovis Isolated from Cattle and Sputum Specimens from Humans in the Eastern Cape Province, South Africa: Public Health and Economic Implication University of Fort Hare].
Brackett, B., Baranska, W., Sawicki, W., & Koprowski, H. (1971). Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization. Proceedings of the National Academy of Sciences, 68(2), 353-357.
Brevini, T., Antonini, S., Pennarossa, G., & Gandolfi, F. (2008). Recent progress in embryonic stem cell research and its application in domestic species. Reproduction in Domestic Animals, 43, 193-199.
Briski, O., & Salamone, D. (2022). Past, present and future of ICSI in livestock species. Animal Reproduction Science, 106925.
Brown, A., & Marshall, D. (1995). A basic sampling strategy: theory and practice. Collecting plant genetic diversity: technical guidelines. CAB International, Wallingford, 75-91.
Burkard, C., Lillico, S. G., Reid, E., Jackson, B., Mileham, A. J., Ait-Ali, T., Archibald, A. L. (2017). Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathogens, 13(2), e1006206.
Camargo, L. S. d. A., Viana, J. H. M., Sá, W. F. d., Ferreira, A. d. M., Ramos, A. d. A., & Vale Filho, V. (2018). Factors influencing in vitro embryo production. Animal Reproduction (AR), 3(1), 19-28.
Campbell, K., Fisher, P., Chen, W., Choi, I., Kelly, R., Lee, J.-H., & Xhu, J. (2007). Somatic cell nuclear transfer: Past, present and future perspectives. Theriogenology, 68, S214-S231.
Carroll, D. (2017). Focus: genome editing: genome editing: past, present, and future. The Yale journal of Biology and Medicine, 90(4), 653.
Chan, A. W., Kukolj, G., Skalka, A. M., & Bremel, R. D. (1999). Timing of DNA integration, transgenic mosaicism, and pronuclear microinjection. Molecular Reproduction and Development, 52(4), 406-413.
Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., Voytas, D. F. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186(2), 757-761.
Co, D. O., Borowski, A. H., Leung, J. D., van der Kaa, J., Hengst, S., Platenburg, G. J., & Drayer, J. I. (2000). Generation of transgenic mice and germline transmission of a mammalian artificial chromosome introduced into embryos by pronuclear microinjection. Chromosome Research, 8(3), 183-191.
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., & Marraffini, L. A. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823.
Croney, C., Muir, W., Ni, J.-Q., Widmar, N. O., & Varner, G. (2018). An overview of engineering approaches to improving agricultural animal welfare. Journal of Agricultural and Environmental Ethics, 31, 143-159.
Daetwyler, H. D., Capitan, A., Pausch, H., Stothard, P., Van Binsbergen, R., Brøndum, R. F., & Grohs, C. (2014). Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nature Genetics, 46(8), 858-865.
Dekkers, J., & Hospital, F. (2002). The use of molecular genetics in the improvement of agricultural populations. Nature Reviews Genetics, 3(1), 22-32.
Dekkers, J. C. (2004). Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. Journal of Animal Science, 82(suppl_13), E313-E328.
Dekkers, J. C. (2011). Use of high-density marker genotyping for genetic improvement of livestock by genomic selection. Animal Science Reviews, 2010, 197.
Ding, Q., Regan, S. N., Xia, Y., Oostrom, L. A., Cowan, C. A., & Musunuru, K. (2013). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 12(4), 393-394.
Dong, Y., Xie, M., Jiang, Y., Xiao, N., Du, X., Zhang, W., & Liang, J. (2013). Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nature Biotechnology, 31(2), 135-141.
Doyon, Y., McCammon, J. M., Miller, J. C., Faraji, F., Ngo, C., Katibah, G. E., & Rebar, E. J. (2008). Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 26(6), 702-708.
Duszewska, A. M., Trzeciak, P., Compa, A., & Rąpała, Ł. (2010). Selected issues concerning biotechnology of farm animals breeding-a review. Animal Science Papers and Reports, 28(4), 295-306.
Edwards, J., Schrick, F., McCracken, M., Van Amstel, S., Hopkins, F., Welborn, M., & Davies, C. (2003). Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. American Journal of Reproductive Immunology, 50(2), 113-123.
Faber, D., Molina, J., Ohlrichs, C., Vander Zwaag, D., & Ferre, L. (2003). Commercialization of animal biotechnology. Theriogenology, 59(1), 125-138.
Falconer, D. MACKAY; TFC (1996) Introduction to quantitative genetics. In: Longman.
Fan, B., Du, Z.-Q., Gorbach, D. M., & Rothschild, M. F. (2010). Development and application of high-density SNP arrays in genomic studies of domestic animals. Asian-Australasian Journal of Animal Sciences, 23(7), 833-847.
Ferré, L., Kjelland, M., Strøbech, L., Hyttel, P., Mermillod, P., & Ross, P. (2020). Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal, 14(5), 991-1004.
Francolini, M., Lavitrano, M., Lamia, C. L., French, D., Frati, L., Cotelli, F., & Spadafora, C. (1993). Evidence for nuclear internalization of exogenous DNA into mammalian sperm cells. Molecular Reproduction and Development, 34(2), 133-139.
Franklin, I., & Mayo, O. (1998). The place of QTL in the basis of quantitative genetics. II. Mapping QTL from a wide cross.
Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., & Sander, J. D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31(9), 822-826.
Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397-405.
García-Sancho, M. (2015). Animal breeding in the age of biotechnology: the investigative pathway behind the cloning of Dolly the sheep. History and Philosophy of the Life Sciences, 37(3), 282-304.
Gelayenew, B., & Asebe, G. (2016). Review on Major Assisted Reproductive Technologies. Global Journal of Science Frontier Research: D: Agriculture and Veterinary, 16, 50-56.
Giacomotto, J., & Ségalat, L. (2010). High-throughput screening and small animal models, where are we? British Journal of Pharmacology, 160(2), 204-216.
Gilchrist, R. B. (2010). Recent insights into oocyte–follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation. Reproduction, Fertility and Development, 23(1), 23-31.
Goldman, I. L., Kadulin, S. G., & Razin, S. V. (2004). Transgenic animals in medicine: integration and expression of foreign genes, theoretical and applied aspects. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 10(11), RA274-285.
Gurdon, J., & Colman, A. (1999). The future of cloning. Nature, 402(6763), 743-746.
Hartung, F., & Schiemann, J. (2014). Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. The Plant Journal, 78(5), 742-752.
Hayes, B. J., Lewin, H. A., & Goddard, M. E. (2013). The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetics, 29(4), 206-214.
Holt, W. V., Pickard, A. R., & Prather, R. S. (2004). Wildlife conservation and reproductive cloning. Reproduction, 127(3), 317-324.
Horiuchi, T., & Numabe, T. (1999). Intracytoplasmic sperm injection (ICSI) in cattle and other domestic animals: Problems and improvements in practical use. Journal of Mammalian Ova Research, 16(1), 1-9.
Ibáñez-Escriche, N., Forni, S., Noguera, J. L., & Varona, L. (2014). Genomic information in pig breeding: Science meets industry needs. Livestock Science, 166, 94-100.
Jang, G., Bhuiyan, M., Jeon, H. Y., Ko, K. H., Park, H. J., Kim, M. K., & Hwang, W. S. (2006). An approach for producing transgenic cloned cows by nuclear transfer of cells transfected with human alpha 1-antitrypsin gene. Theriogenology, 65(9), 1800-1812.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821.
Kahi, A., & Rewe, T. (2008). Biotechnology in livestock production: Overview of possibilities for Africa. African Journal of Biotechnology, 7(25).
Keightley, P. D., & Hill, W. G. (1992). Quantitative genetic variation in body size of mice from new mutations. Genetics, 131(3), 693-700.
Khare, V., & Khare, A. (2017). Modern approach in animal breeding by use of advanced molecular genetic techniques. International Journal of Livestock Research, 7, 1-22.
Kilders, V., & Caputo, V. (2021). Is Animal Welfare Promoting Hornless Cattle? Assessing Consumer’s Valuation for Milk from Gene‐edited Cows under Different Information Regimes. Journal of Agricultural Economics, 72(3), 735-759.
Kind, A., & Schnieke, A. (2008). Animal pharming, two decades on. Transgenic research, 17(6), 1025-1033.
Kishigami, S., Wakayama, S., Hosoi, Y., Iritani, A., & Wakayama, T. (2008). Somatic cell nuclear transfer: infinite reproduction of a unique diploid genome. Experimental Cell Research, 314(9), 1945-1950.
Knox, R. (2016). Artificial insemination in pigs today. Theriogenology, 85(1), 83-93.
Kubota, H., & Brinster, R. L. (2006). Technology insight: in vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nature Clinical Practice Endocrinology & Metabolism, 2(2), 99-108.
Kurome, M., Ishikawa, T., Tomii, R., Ueno, S., Shimada, A., Yazawa, H., & Nagashima, H. (2007). Production of transgenic and non-transgenic clones in miniature pigs by somatic cell nuclear transfer. Journal of Reproduction and Development, 0802200043-0802200043.
Lagutina, I., Lazzari, G., Duchi, R., Turini, P., Tessaro, I., Brunetti, D., & Galli, C. (2007). Comparative aspects of somatic cell nuclear transfer with conventional and zona-free method in cattle, horse, pig and sheep. Theriogenology, 67(1), 90-98.
Lamb, B. M., Mercer, A. C., & Barbas III, C. F. (2013). Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases. Nucleic Acids Research, 41(21), 9779-9785.
Lande, R., & Thompson, R. (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics, 124(3), 743-756.
Lavitrano, M., Busnelli, M., Cerrito, M. G., Giovannoni, R., Manzini, S., & Vargiolu, A. (2005). Sperm-mediated gene transfer. Reproduction, Fertility and Development, 18(2), 19-23.
Lavitrano, M., Forni, M., Varzi, V., Pucci, L., Bacci, M., Stefano, C., & Rossi, M. (1997). Sperm-mediated gene transfer: production of pigs transgenic for a human regulator of complement activation. 29. Transplantation Proceedings, 00998-00996.
Lee, K., Uh, K., & Farrell, K. (2020). Current progress of genome editing in livestock. Theriogenology, 150, 229-235.
Li, M., Ouyang, H., Yuan, H., Li, J., Xie, Z., Wang, K., & Tang, X. (2018). Site-specific Fat-1 knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs. G3: Genes, Genomes, Genetics, 8(5), 1747-1754.
Li, M., Tian, S., Jin, L., Zhou, G., Li, Y., Zhang, Y., & Ma, J. (2013). Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics, 45(12), 1431-1438.
Liu, F.-J., Zhang, Y., Zheng, Y.-M., Zhao, M.-T., Zhang, Y.-L., Wang, Y.-S., & An, Z.-X. (2007). Optimization of electrofusion protocols for somatic cell nuclear transfer. Small Ruminant Research, 73(1-3), 246-251.
Liu, X., Wang, Y., Guo, W., Chang, B., Liu, J., Guo, Z., & Zhang, Y. (2013). Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nature Communications, 4(1), 2565.
M Morrell, J., & Rodriguez-Martinez, H. (2009). Biomimetic techniques for improving sperm quality in animal breeding: a review. The Open Andrology Journal, 1(1).
Macmillan, K., & Peterson, A. (1993). A new intravaginal progesterone releasing device for cattle (CIDR-B) for oestrous synchronisation, increasing pregnancy rates and the treatment of post-partum anoestrus. Animal Reproduction Science, 33(1-4), 1-25.
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823-826.
Mehta, P., Sharma, A., & Kaushik, R. (2017). Transgenesis in farm animals-A review. Agricultural Reviews, 38(2).
Menchaca, A., Vilariño, M., Pinczak, A., Kmaid, S., & Saldaña, J. (2009). Progesterone treatment, FSH plus eCG, GnRH administration, and Day 0 Protocol for MOET programs in sheep. Theriogenology, 72(4), 477-483.
Meng, A., Jessen, J. R., & Lin, S. (1998). Transgenesis. Methods in Cell Biology, 60, 133-148.
Meuwissen, T. H., Hayes, B. J., & Goddard, M. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829.
Meyer, P. (1995). Understanding and controlling transgene expression. Trends in Biotechnology, 13(9), 332-337.
Miao, X. (2013). Recent advances in the development of new transgenic animal technology. Cellular and Molecular Life Sciences, 70(5), 815-828.
Miller, J. C., Holmes, M. C., Wang, J., Guschin, D. Y., Lee, Y.-L., Rupniewski, I., & Kim, K. A. (2007). An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnology, 25(7), 778-785.
Mojica, F. J., Díez-Villaseñor, C. s., García-Martínez, J., & Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60, 174-182.
Naqvi, A. (2007). Application of molecular genetic technologies in livestock production: potentials for developing countries. Advances in Biological Research, 1(3-4), 72-84.
Neeteson, A.-M., Bagnato, A., Merks, J., Finocchiaro, R., Knol, E., Nixey, C., & Pullar, D. (1999). The reproduction and selection of farm animals. Farm Animal Industrial Platform (FAIP).
Niemann, H., Kues, W., & Carnwath, J. (2005). Transgenic farm animals: present and future. Revue scientifique et technique (International Office of Epizootics), 24(1), 285-298.
Niemann, H., & Lucas-Hahn, A. (2012). Somatic cell nuclear transfer cloning: practical applications and current legislation. Reproduction in Domestic Animals, 47, 2-10.
Nogueira, D., Sadeu, J. C., & Montagut, J. (2012). In vitro oocyte maturation: current status. Seminars in reproductive medicine,
Ogura, A., Inoue, K., & Wakayama, T. (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1609), 20110329.
Pajooh, K. H., & Tajik, P. (2020). Effects of sperm parameters and incubation conditions of sperms with foreign DNA in ovine sperm transfection.
Parmar, M. S., Pant, C., Karuppanasamy, K., Mili, B., Upadhyay, D., & Kant, V. (2013). Intracytoplasmic sperm injection (ICSI) and its applications in veterinary sciences: An overview. Science International, 1(8), 266-270.
Pereyra-Bonnet, F., Gibbons, A., Cueto, M., Sipowicz, P., Fernandez-Martin, R., & Salamone, D. (2010). Efficiency of sperm-mediated gene transfer in the ovine by laparoscopic insemination, in vitro fertilization and ICSI. Journal of Reproduction and Development, 1011080318-1011080318.
Prelle, K., Zink, N., & Wolf, E. (2002). Pluripotent stem cells–model of embryonic development, tool for gene targeting, and basis of cell therapy. Anatomia, Histologia, Embryologia, 31(3), 169-186.
Proudfoot, C., Carlson, D. F., Huddart, R., Long, C. R., Pryor, J. H., King, T. J., & Whitelaw, C. B. A. (2015b). Genome edited sheep and cattle. Transgenic Research, 24(1), 147-153.
Qian, L., Tang, M., Yang, J., Wang, Q., Cai, C., Jiang, S., & Ma, D. (2015). Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Scientific Reports, 5(1), 14435.
Qomi, S. B., Asghari, A., & Mojarrad, M. (2019). An overview of the CRISPR-Based genomic-and epigenome-editing system: function, applications, and challenges. Advanced Biomedical Research, 8.
Rahman, A., Ramli, A., & Wan Embong, W. (2008). A review of reproductive biotechnologies and their application in goat. Biotechnology, 7(2), 371-384.
Ribaut, J.-M., & Ragot, M. (2007). Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. Journal of Experimental Botany, 58(2), 351-360.
Ribaut, J., De Vicente, M., & Delannay, X. (2010). Molecular breeding in developing countries: challenges and perspectives. Current opinion in Plant Biology, 13(2), 213-218.
Rodriguez-Martinez, H. (2012). Assisted reproductive techniques for cattle breeding in developing countries: a critical appraisal of their value and limitations. Reproduction in Domestic Animals, 47, 21-26.
Römer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U., & Lahaye, T. (2007). Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science, 318(5850), 645-648.
Ron, M., & Weller, J. (2007). From QTL to QTN identification in livestock–winning by points rather than knock-out: a review. Animal Genetics, 38(5), 429-439.
Rothschild, M. F., Hu, Z.-l., & Jiang, Z. (2007). Advances in QTL mapping in pigs. International Journal of Biological Sciences, 3(3), 192.
Ruan, J., Li, H., Xu, K., Wu, T., Wei, J., Zhou, R., & Ouyang, H. (2015). Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Scientific Reports, 5(1), 1-10.
Ruan, J., Xu, J., Chen-Tsai, R. Y., & Li, K. (2017). Genome editing in livestock: Are we ready for a revolution in animal breeding industry? Transgenic Research, 26, 715-726.
Rülicke, T., & Hübscher, U. (2000). Germ line transformation of mammals by pronuclear microinjection. Experimental Physiology, 85(6), 589-601.
Ryder, O. A. (2002). Cloning advances and challenges for conservation. Trends in Biotechnology, 20(6), 231-232.
Salamone, D. F., Canel, N. G., & Rodríguez, M. B. (2017). Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction, 154(6), F111-F124.
Salisbury, G. W., & VanDemark, N. L. (1961). Physiology of reproduction and artificial insemination of cattle. Physiology of reproduction and artificial insemination of cattle.
Sander, J. D., Dahlborg, E. J., Goodwin, M. J., Cade, L., Zhang, F., Cifuentes, D., & Qi, Y. (2011). Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods, 8(1), 67-69.
Schmidt, M., Zickler, P., Hoffmann, G., Haas, S., Wissler, M., Muessig, A., & Wu, T. (2002). Polyclonal long-term repopulating stem cell clones in a primate model. Blood, The Journal of the American Society of Hematology, 100(8), 2737-2743.
Schornack, S., Meyer, A., Römer, P., Jordan, T., & Lahaye, T. (2006). Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. Journal of Plant Physiology, 163(3), 256-272.
Smidt, D., & Niemann, H. (1999). Biotechnology in genetics and reproduction. Livestock Production Science, 59(2-3), 207-221.
Smith, C. (1988). Applications of embryo transfer in animal breeding. Theriogenology, 29(1), 203-212.
Smith, C., & Simpson, S. (1986). The use of genetic polymorphism in livestock improvement. Zeitschrift fuer Tierzuechtung und Zuechtungsbiologie (Germany, FR).
Smith, K., & Spadafora, C. (2005). Sperm-mediated gene transfer: Applications and implications. Bioessays, 27(5), 551-562.
Soller, M. (1978). The use of loci associated with quantitative effects in dairy cattle improvement. Animal Science, 27(2), 133-139.
Spelman, R., & Bovenhuis, H. (1998). Moving from QTL experimental results to the utilization of QTL in breeding programmes. Animal Genetics, 29(2), 77-84.
Tait-Burkard, C., Doeschl-Wilson, A., McGrew, M. J., Archibald, A. L., Sang, H. M., Houston, R. D., & Watson, M. (2018). Livestock 2.0–genome editing for fitter, healthier, and more productive farmed animals. Genome Biology, 19, 1-11.
Takasu, Y., Kobayashi, I., Tamura, T., Uchino, K., Sezutsu, H., & Zurovec, M. (2016). Precise genome editing in the silkworm Bombyx mori using TALENs and ds-and ssDNA donors–A practical approach. Insect Biochemistry and Molecular Biology, 78, 29-38.
Thibier, M. (2011). Embryo transfer: a comparative biosecurity advantage in international movements of germplasm. Revue Scientifique et Technique-OIE, 30(1), 177.
Thibier, M., & Wagner, H.-G. (2002). World statistics for artificial insemination in cattle. Livestock Production Science, 74(2), 203-212.
Tobă, G., Bogdan, A., Paraschivescu, M. T., Cornilă, M., Ioniță, L., Tobă, L., & Bănățeanu, F. (2012). Use moet programme for development and conservation of some races of bovine in Romania. Scientific Works-University of Agronomical Sciences and Veterinary Medicine, Bucharest Series C, Veterinary Medicine, 58(4), 367-374.
Uleberg, E., & Meuwissen, T. H. (2007). Fine mapping of multiple QTL using combined linkage and linkage disequilibrium mapping–A comparison of single QTL and multi QTL methods. Genetics Selection Evolution, 39(3), 285-299.
Verma, O., Kumar, R., Kumar, A., & Chand, S. (2012). Assisted Reproductive Techniques in Farm Animal-From Artificial Insemination to Nanobiotechnology. Veterinary World, 5(5).
Vishwanath, R. (2003). Artificial insemination: the state of the art. Theriogenology, 59(2), 571-584.
Wajid, A., Hussain, T., Wasim, M., Babar, M., Anjum, A., Shah, S., & Badshah, N. (2013). The future prospective of genomic biotechnology in animal breeding: their potential for livestock production in Pakistan. Journal of Animal and Plant Sciences, 23(4), 944-955.
Wakayama, T., Tabar, V., Rodriguez, I., Perry, A. C., Studer, L., & Mombaerts, P. (2001). Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science, 292(5517), 740-743.
Wall, R., Kerr, D., & Bondioli, K. (1997). Transgenic dairy cattle: genetic engineering on a large scale. Journal of Dairy Science, 80(9), 2213-2224.
Wall, R., & Seidel Jr, G. (1992). Transgenic farm animals—a critical analysis. Theriogenology, 38(2), 337-357.
Wall, R. J. (2001). Pronuclear microinjection. Cloning & Stem Cells, 3(4), 209-220.
Wang, X., Niu, Y., Zhou, J., Yu, H., Kou, Q., Lei, A., & Shen, Q. (2016). Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Scientific Reports, 6(1), 32271.
Wani, N. A., Wernery, U., Hassan, F., Wernery, R., & Skidmore, J. (2010). Production of the first cloned camel by somatic cell nuclear transfer. Biology of Reproduction, 82(2), 373-379.
Wei, Y., Chesne, M. T., Terns, R. M., & Terns, M. P. (2015). Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Research, 43(3), 1749-1758.
Werf, J. v. d. (2013). Genomic selection in animal breeding programs. In Genome-wide association studies and genomic prediction (pp. 543-561). Springer.
Whitley, N. C., & Jackson, D. (2004). An update on estrus synchronization in goats: a minor species. Journal of Animal Science, 82(13), 270-276.
Yang, D., Yang, H., Li, W., Zhao, B., Ouyang, Z., Liu, Z., & Tian, J. (2011). Generation of PPARγ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Research, 21(6), 979-982.
Yeom, Y. I., Fuhrmann, G., Ovitt, C. E., Brehm, A., Ohbo, K., Gross, M., & Scholer, H. (1996). Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development, 122(3), 881-894.
Yu, B., Lu, R., Yuan, Y., Zhang, T., Song, S., Qi, Z., & Cheng, Y. (2016). Efficient TALEN-mediated myostatin gene editing in goats. BMC Developmental Biology, 16, 1-8.
Zhang, H.-X., Zhang, Y., & Yin, H. (2019). Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Molecular Therapy, 27(4), 735-746.
Zhang, J., Cui, M. L., Nie, Y. W., Dai, B., Li, F. R., Liu, D. J., & Cang, M. (2018). CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus. The FEBS Journal, 285(15), 2828-2839.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Agriculture and Environmental Science Academy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.