Performance evaluation of advanced durum wheat genotypes under irrigated condition at Bhairahawa, Nepal
Abstract
A field research was carried out at the National Wheat Research Program (NWRP) in Bhairahawa, Nepal in 2022 to investigate elite durum wheat genotypes and key traits contributing to grain yield. The experiment was performed in an alpha lattice design with two replications. Thirty distinct durum wheat genotypes were assessed, focusing on fourteen quantitative traits including days to booting, days to heading, days to maturity, plant height, spike length, peduncle length, number of tillers per square meter, number of spikes per square meter, number of grains per spike, grain weight per spike, thousand kernel weight, grain yield, biomass yield, chlorophyll content. The studied genotypes were grown under irrigated condition. Genotype NL1779 attained the highest grain yield of 3828 kg/ha, followed by NL1769 (3784 kg/ha), NL1772 (3726 kg/ha), NL1789 (3640 kg/ha) and NL1784 (3570 kg/ha). Principal components analysis revealed that eight traits were the major loadings on the first two principal components that describe 53.4% of the total morphological variance at irrigated condition. Cluster analysis grouped the different genotypes into four clusters, with each cluster showing variation in performance for different traits under irrigated conditions. Cluster III is characterized by genotypes exhibiting the highest grain yield, biomass yield, spike length, number of grains per spike, and number of spikes per square meter. Notably, the high-yielding genotypes NL1779, NL1769, NL1772, NL1789, NL1784, and NL1773 identified within this cluster could serve as potential candidates for inclusion in the national breeding program. These superior genotypes could be recommended for irrigated environment after further evaluation. Integrating them into national breeding programs offers an opportunity for genetic improvement, contributing to establishing a robust durum wheat production system in Nepal, meeting the growing demand for durum wheat products while promoting dietary diversity and sustainable agriculture.
Keywords:
Cluster analysis, Correlation analysis, Durum wheat, Genotype evaluation, Principal component analysisDownloads
References
Adhikari, S., Rana, N., Ojha, B., Kharel, R., Chauhan, S., & Thapa, D. (2018). Study of Variability and Association of Yield Attributing Traits in Durum Wheat Genotypes. Journal of Agriculture and Ecology Research International, 14(4), 1–12, https://doi.org/10.9734/jaeri/2018/42077
Al-Sayaydeh, R., Shtaya, M. J., Qubbaj, T., Al-Rifaee, M. K., Alabdallah, M. A., Migdadi, O., Gammoh, I. A., & Al-Abdallat, A. M. (2023). Performance and Stability Analysis of Selected Durum Wheat Genotypes Differing in Their Kernel Characteristics. Plants, 12(14), 1–18.
Azad, A. K., Sarker, U., Ercisli, S., Assouguem, A., Ullah, R., Almeer, R., Sayed, A. A., & Peluso, I. (2022). Evaluation of Combining Ability and Heterosis of Popular Restorer and Male Sterile Lines for the Development of Superior Rice Hybrids. Agronomy, 12(4), 1–23, https://doi.org/10.3390/agronomy12040965
Azam, M. G., Hossain, M. A., Sarker, U., Alam, A. K. M. M., Nair, R. M., Roychowdhury, R., Ercisli, S., & Golokhvast, K. S. (2023). Genetic Analyses of Mungbean [Vigna radiata (L.) Wilczek] Breeding Traits for Selecting Superior Genotype(s) Using Multivariate and Multi-Traits Indexing Approaches. Plants, 12(10). https://doi.org/10.3390/plants12101984
Bányai, J., Kiss, T., Gizaw, S. A., Mayer, M., Spitkó, T., Tóth, V., Kuti, C., Mészáros, K., Láng, L., Karsai, I., & Vida, G. (2020). Identification of superior spring durum wheat genotypes under irrigated and rain-fed conditions. Cereal Research Communications, 48(3), 355–364, https://doi.org/10.1007/s42976-020-00034-z
Beres, B. L., Rahmani, E., Clarke, J. M., Grassini, P., Pozniak, C. J., Geddes, C. M., Porker, K. D., May, W. E., & Ransom, J. K. (2020). A Systematic Review of Durum Wheat: Enhancing Production Systems by Exploring Genotype, Environment, and Management (G × E × M) Synergies. Frontiers in Plant Science, 11(October). https://doi.org/10.3389/fpls.2020.568657
Bhatta, M., Regmi, A. P., Sah, S. N., & Shaheb, M. R. (2020). A guide for fertilizer recommendation for cereal crops in Nepal. Nepal Agricultural Research Council.
Boussakouran, A., El Yamani, M., Sakar, E. H., & Rharrabti, Y. (2021). Genetic Advance and Grain Yield Stability of Moroccan Durum Wheats Grown under Rainfed and Irrigated Conditions. International Journal of Agronomy. https://doi.org/10.1155/2021/5571501
Chamekh, Z., Karmous, C., Ayadi, S., Sahli, A., Belhaj Fraj, M., Yousfi, S., Rezgui, S., Ben Aissa, N., Serret, M. D., McCann, I., Trifa, Y., Amara, H., & Araus, J. L. (2017). Comparative performance of δ13C, ion accumulation and agronomic parameters for phenotyping durum wheat genotypes under various irrigation water salinities. Annals of Applied Biology, 170(2), 229–239, https://doi.org/10.1111/aab.12332
CIMMYT. (2019). Wheat production. https://www.cimmyt.org/resources/wheat-production/
Dukamo, B. H., Gedebo, A., Tesfaye, B., & Degu, H. D. (2023). Genetic diversity of Ethiopian durum wheat (T. turgidum subsp. durum) landraces under water stressed and non stressed conditions. Heliyon, 9(7), e18359. https://doi.org/10.1016/j.heliyon.2023.e18359
Garg, M., Sharma, A., Vats, S., Tiwari, V., Kumari, A., Mishra, V., & Krishania, M. (2021). Vitamins in Cereals: A Critical Review of Content, Health Effects, Processing Losses, Bioaccessibility, Fortification, and Biofortification Strategies for Their Improvement. Frontiers in Nutrition, 8(6), 1–15, https://doi.org/10.3389/fnut.2021.586815
Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). John Wiley and Sons.
González-Ribot, G., Opazo, M., Silva, P., & Acevedo, E. (2017). Traits explaining durum wheat (Triticum turgidum L. spp. durum) yield in dry chilean mediterranean environments. Frontiers in Plant Science, 8(10), 1–11, https://doi.org/10.3389/fpls.2017.01781
Kadkol, G. P., & Sissons, M. (2015). Durum Wheat: Overview. In Encyclopedia of Food Grains: Second Edition (2nd ed., Vols. 1–4). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-1
Kandel, B. P., Sharma, B. K., Sharma, S., & Shrestha, J. (2018). Genetic variability, heritability, and genetic advance estimates in early maize (Zea mays L,) genotypes in Nepal. Agricultura, 107(3-4), 29-35, https://doi.org/10.30910/turkjans.421363394437-5.00024-3
Khadka, D., Lamichhane, S., Thapa, B., Rawal, N., Chalise, D. R., Vista, S. P., & Lakhe, L. (2015, March). Assessment of soil fertility status and preparation of their maps of National Wheat Research Program (NWRP), Bhairahawa, Nepal. In Proceedings of the workshop, 24-25 March 2015.
Khalid, A., Hameed, A., Shamim, S., & Ahmad, J. (2022). Divergence in Single Kernel Characteristics and Grain Nutritional Profiles of Wheat Genetic Resource and Association Among Traits. Frontiers in Nutrition, 8(2), 1–13, https://doi.org/10.3389/fnut.2021.805446
Khalid, A., Hameed, A., & Tahir, M. F. (2023). Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Frontiers in Nutrition, 10(2), 1–14, https://doi.org/10.3389/fnut.2023.1053196
Khaliq, I., Irshad, A. and Arshad, M. 2008. Awn and flag leaf contribution towards grains yield in spring wheat (Triticum aestivum L.). Cereal Research Communications, 36(1), 65-76.
Khan, M. R., Anjum, F.M., Zahoor, T., & Nawaz, H. (2009). Biochemical and technological characterization of Pakistani spring wheats. Pakistan Journal of Agricultural Sciences, 46(4), 271-279.
Khan, S. A., & Hassan, G. (2017). Heritability and Correlation Studies of Yield and Yield Related Traits in Bread Wheat. Sarhad Journal of Agriculture, 33(1), 103–107, https://doi.org/10.17582/journal.sja/2017.33.1.103.107
Laala, Z., Oulmi, A., Fellahi, Z. E. A., & Benmahammed, A. (2021). Studies on the nature of relationships between grain yield and yield-related traits in durum wheat (Triticum durum desf.) populations. Revista Facultad Nacional de Agronomia Medellin, 74(3), 9631–9642, https://doi.org/10.15446/rfnam.v74n3.92488
Madan, S., & Sethi, S. K. (2018). Chemical Science Review and Letters Assessment of Yield Attributes of Durum Wheat (Triticum Durum L.) Genotypes under Irrigated Conditions. Chemical Science Review and Letters, 7(25), 256–261.
Mansouri, A., Oudjehih, B., Benbelkacem, A., Fellahi, Z. E. A., & Bouzerzour, H. (2018). Variation and Relationships among Agronomic Traits in Durum Wheat [Triticum turgidum (L.) Thell. ssp. turgidum conv. durum (Desf.) MacKey] under South Mediterranean Growth Conditions: Stepwise and Path Analyses. International Journal of Agronomy, 2018. https://doi.org/10.1155/2018/8191749
Martínez-Moreno, F., Solís, I., Noguero, D., Blanco, A., Özberk, İ., Nsarellah, N., & Soriano, J. M. (2020). Durum wheat in the Mediterranean Rim: Historical evolution and genetic resources. Genetic Resources and Crop Evolution, 67, 1415-1436, https://doi.org/10.1007/s10722-020-00913-8
Marzario, S., Sica, R., Taranto, F., Fania, F., Esposito, S., De Vita, P., Gioia, T., & Logozzo, G. (2023). Phenotypic evolution in durum wheat (Triticum durum Desf.) based on SNPs, morphological traits, UPOV descriptors and kernel-related traits. Frontiers in Plant Science, 14(8), 1–20, https://doi.org/10.3389/fpls.2023.1206560
Mérida-García, R., Bentley, A. R., Gálvez, S., Dorado, G., Solís, I., Ammar, K., & Hernandez, P. (2020). Mapping agronomic and quality traits in elite durum wheat lines under differing water regimes. Agronomy, 10(1), 1–23, https://doi.org/10.3390/agronomy10010144
MoALD. (2023). Statistical Information on Nepalese Agriculture 2078/79 (2021/22). MoALD, 269.
Mohammadi, R., & Amri, A. (2021). Agronomic Performance and Genotype × Moisture Conditions Interaction for Morpho-Physiological Traits in Durum Wheat. Crop Breeding, Genetics and Genomics, 3(1), 1–25, https://doi.org/10.20900/cbgg20210002
Mohammadi, R., Etminan, A., & Shoshtari, L. (2019). Agro-physiological characterization of durum wheat genotypes under drought conditions. Experimental Agriculture, 55(3), 484–499, https://doi.org/10.1017/S0014479718000133
Mohammadi, R., & Golkari, S. (2022). Genetic resources for enhancing drought tolerance from a mini-core collection of spring bread wheat (Triticum aestivum L.). Acta Scientiarum - Agronomy, 44(1978), 1–15. https://doi.org/10.4025/actasciagron.v44i1.56129
Mohammadi, R., Sadeghzadeh, B., Ahmadi, H., Bahrami, N., & Amri, A. (2015). Field evaluation of durum wheat landraces for prevailing abiotic and biotic stresses in highland rainfed regions of Iran. Crop Journal, 3(5), 423–433, https://doi.org/10.1016/j.cj.2015.03.008
Nazco, R., Villegas, D., Ammar, K., Peña, R. J., Moragues, M., & Royo., C. (2012). Can Mediterranean durum wheat landraces contribute to improved grain quality attributes in modern cultivars? Euphytica, 185, 1–17, https://doi.org/10.1007/s10681-011-0588-6
Nainabasti, A., Subedi, B., Thapa, D. S., Bohora, K. B., Shah, M. K., & Pant, K. R. (2024). Evaluation of elite spring wheat genotypes for grain yield and other agronomic attributes in hills of Sudurpaschim Province, Nepal. Archives of Agriculture and Environmental Science, 9(1), 85–92. https://doi.org/10.26832/24566632.2024.0901013
NWRP. (2021). Annual Report 2077/78 (2020/21). National Wheat Research Program, NARC, Bhairahawa, Rupandehi, Nepal.
Pandey, G., Yadav, L., Tiwari, A., Khatri, H. B., Basnet, S., Bhattarai, K., Gyawali, B., Rawal, N., & Khatri, N. (2017). Analysis of Yield Attributing Characters of Different Genotypes of Wheat in Rupandehi, Nepal. International Journal of Environment, Agriculture and Biotechnology, 2(5), 2374–2379.
https://doi.org/10.22161/ijeab/2.5.13
Paudel, D. C., Paudel, G., Khatri-Chhetri, A., Bhatta, M., & Gurung, R. (2022). Mitigating simultaneous heat and drought stress in wheat by exploiting genetic variability for root traits in Western Nepal. Agronomy, 12(2), 472. https://doi.org/10.3390/agronomy12020472
Paux, E., Sourdille, P., Mackay, I., and Feuillet, C. (2012). Sequence-Based marker development in wheat: Advances and applications to breeding. Biotechnology Advances, 30, 1071–1088, https://doi.org/10.1016/j.bioteChadv.2011.09.015
Razzaq, A., Ali, Q., Qayyum, A., Mahmood, I., Ahmad, M., & Rasheed, M. (2013). Physiological responses and drought resistance index of nine wheat (Triticum aestivum L.) cultivars under different moisture conditions. Pakistan Journal of Botany, 45, 151–155.
Sarker, M. G. Azam, M. Z. A. (2022).Talukder, Genetic variation in mineral profiles, yield contributing agronomic traits, and foliage yield of stem amaranth, Genetika, 54 (1), 91–108.
Schulthess, A. W., Reif, J. C., Ling, J., Plieske, J., Kollers, S., Ebmeyer, E., Korzun, V., Argillier, O., Stiewe, G., Ganal, M. W., Röder, M. S., & Jiang, Y. (2017). The roles of pleiotropy and close linkage as revealed by association mapping of yield and correlated traits of wheat (Triticum aestivum L.). Journal of Experimental Botany, 68(15), 4089–4101, https://doi.org/10.1093/jxb/erx214
Shyam, C., P.K., C., N.K., R., Banjare, U., & Densena, M. (2018). Estimation of correlation coefficient study of some quantitative traits in wheat. Annals of Plant Sciences, 7(2), 2078. https://doi.org/10.21746/aps.2018.7.2.17
Tahir, M., Tanveer, A., Hussain Shah, T., Fiaz, N., & Wasaya, A. (2009). Yield Response of Wheat (Triticum aestivum L.) to Boron Application at Different Growth Stages. Pakistan Journal of Life and Social Sciences, 7(1), 39–42.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Agriculture and Environmental Science Academy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.