Integrating microbial consortia into biofertilizers for sustainable agriculture: Enhancing plant productivity and soil health

Nandish Gurubasajar 1 , Thippeswamy Basaiah 2

1   Department of P.G. Studies and Research in Microbiology, Bioscience Complex, Jnanasahyadri, Kuvempu University, Shankaraghatta – 577 451, Karnataka, India
2   Department of P.G. Studies and Research in Microbiology, Bioscience Complex, Jnanasahyadri, Kuvempu University, Shankaraghatta – 577 451, Karnataka, India

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2025.1001023

doi

Abstract

Sustainable agriculture focuses on maintaining the soil health, minimizing environmental impact, and promoting plant productivity. Biofertilizers, using beneficial microbes, have become a powerful tool in biofertilizer formulations, enhancing plant productivity and soil health. Microbial consortia, composed of bacteria, fungi, and algae, play a crucial role in biofertilizer formulations by improving soil health and structure, converting atmospheric nitrogen into plant-accessible forms, breaking down insoluble phosphorus, mobilizing micronutrients, and promoting plant growth through growth-regulating hormones and bio control. Benefits of microbial consortia include enhanced plant productivity, reduced environmental impact, soil health restoration and resilience to environmental stress. However, their effectiveness can be affected by factors like environmental conditions, storage and microbial species compatibility. Careful formulation and application of microbial consortia are essential for their success. Regulatory approval is crucial for large-scale implementation and understanding the interactions between different microbes is necessary to design effective consortia that maximize benefits and minimize negative outcomes. This review emphasizes the crucial role of beneficial soil microorganisms in managing the rhizosphere, promoting plant growth and yield through a cost-effective, non-toxic, and eco-friendly approach.

Keywords:

Bio fertilizers, Growth-regulating hormones, Microbial consortia and micronutrients

Downloads

Download data is not yet available.

References

Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological research, 163(2), 173-181.

Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology letters, 32, 1559-1570.

Bhatt, K., & Maheshwari, D. K. (2020). Zinc solubilizing bacteria (Bacillus megaterium) with multifarious plant growth promoting activities alleviates growth in Capsicum annuum L. 3 Biotech, 10(2), 36.

Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., & Gurmani, A. R. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10), 904-916.

Breitkreuz, C., Buscot, F., Tarkka, M., & Reitz, T. (2020). Shifts between and among populations of wheat rhizosphere Pseudomonas, Streptomyces and Phyllobacterium suggest consistent phosphate mobilization at different wheat growth stages under abiotic stress. Frontiers in Microbiology, 10, 3109.

Cheng, X. L., Liu, C. J., & Yao, J. W. (2010). The current status, development trend and strategy of the bio-pesticide industry in China. Hubei Agricultural Sciences, 49(9), 2287-2290.

Cheng, X. L., Liu, C. J., & Yao, J. W. (2010). The current status, development trend and strategy of the bio-pesticide industry in China. Hubei Agricultural Sciences, 49(9), 2287-2290.

da Silva Júnior, S., Stamford, N. P., Oliveira, W. S., Silva, E. V. N., de Rosalia e Silva Santos, C. E., de Freitas, A. D. S., & da Silva, V. S. G. (2018). Microbial biofertilizer increases nutrient uptake on grape (Vitis labrusca L) grown in an alkaline soil reclaimed by sulfur and'Acidithiobacillus'. Australian Journal of Crop Science, 12(10), 1695-1701.

de Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological control, 43(3), 237-256.

Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects A review. Journal of soil science and plant nutrition, 17(4), 897-911.

Fasusi, O. A., Cruz, C., & Babalola, O. O. (2021). Agricultural sustainability: microbial biofertilizers in rhizosphere management. Agriculture, 11(2), 163.

Glick, B. R. (2012). Plant growth‐promoting bacteria: mechanisms and applications. Scientifica, 2012(1), 963401.

Gopalakrishnan, S., Rao, G. R., Humayun, P., Rao, V. R., Alekhya, G., Jacob, S., & Rupela, O. (2011). Efficacy of botanical extracts and entomopathogens on control of Helicoverpa armigera and Spodoptera litura. African Journal of Biotechnology, 10(73), 16667-16673.

jaz, M., Ali, Q., Ashraf, S., Kamran, M., & Rehman, A. (2019). Development of future bioformulations for sustainable agriculture. Microbiome in plant health and disease: challenges and opportunities, 421-446.

Jisha, V. N., Smitha, R. B., & Benjamin, S. (2013). An overview on the crystal toxins from Bacillus thuringiensis. Advances in Microbiology, 3(05), 462.

Kong, W., Meldgin, D. R., Collins, J. J., & Lu, T. (2018). Designing microbial consortia with defined social interactions. Nature chemical biology, 14(8), 821-829.

Koppenhöfer, A. M., & Kaya, H. K. (2001). Entomopathogenic nematodes and insect pest management. In Microbial biopesticides (pp. 284-313). CRC Press.

Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., & Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23, 101487.

Kumar, R., Kumawat, N., & Sahu, Y. K. (2017). Role of biofertilizers in agriculture. Popular kheti, 5(4), 63-66.

Labuschagne, N., Pretorius, T., & Idris, A. H. (2011). Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. Plant growth and health promoting bacteria, 211-230.

Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational research on Trichoderma: from'omics to the field. Annual review of phytopathology, 48(1), 395-417.

Mącik, M., Gryta, A., & Frąc, M. (2020). Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Advances in agronomy, 162, 31-87.

Manganiello, G., Sacco, A., Ercolano, M. R., Vinale, F., Lanzuise, S., Pascale, A., & Woo, S. L. (2018). Modulation of tomato response to Rhizoctonia solani by Trichoderma harzianum and its secondary metabolite harzianic acid. Frontiers in microbiology, 9, 1966.

Rebah, F. B., Tyagi, R. D., & Prevost, D. (2002). Wastewater sludge as a substrate for growth and carrier for rhizobia: the effect of storage conditions on survival of Sinorhizobium meliloti. Bioresource technology, 83(2), 145-151.

Saha, B., Saha, S., Roy, P. D., Padhan, D., Pati, S., & Hazra, G. C. (2018). Microbial transformation of sulphur: an approach to combat the sulphur deficiencies in agricultural soils. Role of rhizospheric microbes in soil: Volume 2: nutrient management and crop improvement, 77-97.

Saharan, B. S., & Nehra, V. (2011). Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res, 21(1), 30.

Saharan, B. S., & Nehra, V. (2011). Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res, 21(1), 30.

Samolski, I., Rincon, A. M., Pinzon, L. M., Viterbo, A., & Monte, E. (2012). The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology, 158(1), 129-138.

Schunemann, R., Knaak, N., & Fiuza, L. M. (2014). Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. International Scholarly Research Notices, 2014(1), 135675.

Seenivasagan, R., & Babalola, O. O. (2021). Utilization of microbial consortia as biofertilizers and biopesticides for the production of feasible agricultural product. Biology, 10(11), 1111.

Umesha, S., Singh, P. K., & Singh, R. P. (2018). Microbial biotechnology and sustainable agriculture. In Biotechnology for sustainable agriculture (pp. 185-205). Woodhead Publishing.

Ventorino, V., Sannino, F., Piccolo, A., Cafaro, V., Carotenuto, R., & Pepe, O. (2014). Methylobacterium populi VP2: plant growth‐promoting bacterium isolated from a highly polluted environment for polycyclic aromatic hydrocarbon (PAH) biodegradation. The Scientific World Journal, 2014(1), 931793.

Viscardi, S., Ventorino, V., Duran, P., Maggio, A., De Pascale, S., Mora, M. L., & Pepe, O. (2016). Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. Journal of soil science and plant nutrition, 16(3), 848-863.

Wargo, M. J., & Hogan, D. A. (2006). Fungal-bacterial interactions: a mixed bag of mingling microbes. Current opinion in microbiology, 9(4), 359-364.

Yadav, K. K., & Smritikana Sarkar, S. S. (2019). Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture.

Published

2025-03-25

How to Cite

Gurubasajar, N., & Basaiah, T. (2025). Integrating microbial consortia into biofertilizers for sustainable agriculture: Enhancing plant productivity and soil health. Archives of Agriculture and Environmental Science, 10(1), 157-163. https://doi.org/10.26832/24566632.2025.1001023

Issue

Section

Review Articles