A review on biochar as a potential soil fertility enhancer to agriculture
Abstract
Biochar is a carbon rich material produced from the pyrolysis of biomass at high temperature under oxygen deficit condition. It is recently introduced as one of the effective soil amendments with wide range of environmental benefits. This paper summarizes and discusses the effects of biochar on different soil parameters and crop productivity by reviewing scientific studies conducted around the globe. The benefit is derived especially from the improved soil physical and chemical properties through improvement in soil moisture content, soil bulk density, nitrogen uptake and availability and retention of other soil nutrients, but its effect is highly dependent on feedstocks used, pyrolysis temperature and soil types. It has been found to be more effective on infertile and degraded land. Further research is required to completely reveal the capacity of biochar in enhancing the soil characteristics.
Keywords:
Biochar, Fertilizer, N-cycling, Productivity, Soil fertility, StabilityDownloads
References
Abrishamkesh, S., Gorji, M., Asadi, H., Bagheri-Marandi, G. H., & Pourbabaee, A. A. (2015). Effects of rice husk biochar application on the properties of alkaline soil and lentil growth. Plant, Soil and Environment, 62(11), 475–482, https://doi.org/10.17221/117/2015-PSE
Abrol, V., Ben-Hur, M., Verheijen, F. G. A., Keizer, J. J., Martins, M. A. S., Tenaw, H., Tchehansky, L., & Graber, E. R. (2016). Biochar effects on soil water infiltration and erosion under seal formation conditions: rainfall simulation experiment. Journal of Soils and Sediments, 16(12), 2709–2719, https://doi.org/10.1007/s11368-016-1448-8
Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., Dunsin, O., & Simeon, V. T. (2019). Effects of biochar and poultry manure on soil characteristics and the yield of radish. Scientia Horticulturae, 243(3), 457–463, https://doi.org/10.1016/j.scienta.2018.08.048
Adekiya, Aruna Olasekan, Agbede, T. M., Olayanju, A., Ejue, W. S., Adekanye, T. A., Adenusi, T. T., & Ayeni, J. F. (2020). Effect of Biochar on Soil Properties, Soil Loss, and Cocoyam Yield on a Tropical Sandy Loam Alfisol. 2020.
Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2015). Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543, 295–306, https://doi.org/10.1016/j.scitotenv.2015.11.054
Alghamdi, G. A. (2018). Biochar as a potential soil additive for improving soil physical properties — a review. Arabian Journal of Geosciences, 11, 766, https://doi.org/10.1007/s12517-018-4056-7
Al-Wabel, M. I., Hussain, Q., Usman, A. R. A., Ahmad, M., Abduljabbar, A., Sallam, A. S., & Ok, Y. S. (2017). Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degradation and Development, 29(7), 2124–2161, https://doi.org/10.1002/ldr.2829
Al-Wabel, M. I., Usman, A. R. A., El-Naggar, A. H., Aly, A. A., Ibrahim, H. M., Elmaghraby, S., & Al-Omran, A. (2015). Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi Journal of Biological Sciences, 22(4), 503–511, https://doi.org/10.1016/j.sjbs.2014.12.003
Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil, 337: 1–18, https://doi.org/10.1007/s11104-010-0464-5
Barnes, R. T., Gallagher, M. E., Masiello, C. A., Liu, Z., & Dugan, B. (2014). Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments. PloS One. (9),https://doi.org/10.1371/journal.pone.0108340
Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., & Westgate, M. (2013). Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy, 5(2), 132–143, https://doi.org/10.1111/gcbb.12026
Benjamin, J. G., Nielsen, D. C., & Vigil, M. F. (2003). Quantifying effects of soil conditions on plant growth and crop production. Geoderma, 116(1–2),
–148, https://doi.org/10.1016/S0016-7061(03)00098-3
Berihun, T., Tolosa, S., Tadele, M., & Kebede, F. (2017). Effect of biochar application on growth of garden pea (Pisum sativum L.) in acidic soils of bule woreda gedeo zone Southern Ethiopia. International Journal of Agronomy, 1-8, https://doi.org/10.1155/2017/6827323
Burrell, L. D., Zehetner, F., Rampazzo, N., Wimmer, B., & Soja, G. (2016). Long-term effects of biochar on soil physical properties. Geoderma, 282, 96-102.
Chan, K. Y. A., B, L. V. Z., Meszaros, I. A., Downie, A. C., & Joseph, S. D. (2007). Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research. 45, 629–634.
Chan, K. Y. A., B, L. V. Z., Meszaros, I. A., Downie, A. C., & Joseph, S. D. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46, 437–444.
Chen, W., Meng, J., Han, X., Lan, Y., & Zhang, W. (2019). Past, present, and future of biochar. Biochar, 1, 75–87, https://doi.org/10.1007/s42773-019-00008-3
Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., Julson, J. L., Chintala, R., Mollinedo, J., Schumacher, T. E., & Douglas, D. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60(3), 393–404, https://doi.org/10.1080/03650340.2013.789870
Clough, T., Condron, L., Kammann, C., & Müller, C. (2013). A Review of Biochar and Soil Nitrogen Dynamics. Agronomy, 3(2), 275–293, https://doi.org/10.3390/agronomy3020275
DeLuca, H. T., Gundale, F. M., MacKenzie, D. M., & Jones, L. D. (2009). Biochar effects on soil nutrient transformations. In J. Lehmann & S. Joseph (Eds.), Biochar for Environment Management, 251–280.
Devereux, R. C., Sturrock, C. J., Mooney, S. J., Devereux, R. C., Sturrock, C. J., & Mooney, S. J. (2013). The effects of biochar on soil physical properties and winter wheat growth. Earth and Environmental Science Transactions of the Royal Royal Society of Edinburgh. 3–18, https://doi.org/10.1017/S1755691012000011
El Sharkawi, H. M., Tojo, S., Chosa, T., Malhat, F. M., & Youssef, A. M. (2018). Biochar-ammonium phosphate as an uncoated-slow release fertilizer in sandy soil. Biomass and Bioenergy, 117(December 2017), 154–160, https://doi.org/10.1016/j.biombioe.2018.07.007
El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., Zimmerman, A. R., Ahmad, M., Shaheen, S. M., & Ok, Y. S. (2018). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536–554, https://doi.org/10.1016/j.geoderma.2018.09.034
Gaskin, J. W., Speir, R. A., Harris, K., Das, K. C., Lee, R. D., Morris, L. A., & Fisher, D. S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2), 623–633, https://doi.org/10.2134/agronj2009.0083
Ghorbani, M., & Amirahmadi, E. (2018). Effect of rice husk Biochar (RHB) on some of chemical properties of an acidic soil and the absorption of some nutrients. Journal of Applied Sciences and Environmental Management, 22(3), 313, https://doi.org/10.4314/jasem.v22i3.4
Githinji, L. (2014). Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Archives of Agronomy and Soil Science, 60(4), 457–470, https://doi.org/10.1080/03650340.2013.821698
Glaser, B., & Lehr, V. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. 1–9, https://doi.org/10.1038/s41598-019-45693-z
Hagner, M., Kemppainen, R., Jauhiainen, L., & Tiilikkala, K. (2016). The effects of birch (Betula spp.) biochar and pyrolysis temperature on soil properties and plant growth. Soil & Tillage Research, 163, 224–234, https://doi.org/10.1016/j.still.2016.06.006
Hussain, M., Farooq, M., Nawaz, A., Al-sadi, A. M., Solaiman, Z. M., Alghamdi, S. S., Ammara, U., & Ok, Y. S. (2016). Biochar for crop production: potential benefits and risks. Journal of Soil Sediments. https://doi.org/10.1007/s11368-016-1360-2
Islami, T., Guritno, B., Basuki, N., & Suryanto, A. (2011). Maize Yield and Associated Soil Quality Changes in Cassava + Maize intercropping System After 3 Years of Biochar Application. Journal of Agriculture and Food Technology, 1(7), 112–115, http://www.textroad.com/pdf/JAFT/J
Jien, S., & Wang, C. (2013). Catena Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233, https://doi.org/10.1016/j.catena.2013.06.021
Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agriculture, Ecosystems and Environment, 140(1–2), 309–313, https://doi.org/10.1016/j.agee.2010.12.005
Laird, D. A., Fleming, P., Davis, D. D., Horton, R., & Wang, B. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3-4), 443-449, https://doi.org/10.1016/j.geoderma.2010.05.013.
Lehmann, J. (2007). A handful of carbon. Nature, 447(7141), 143–144, https://doi.org/10.1038/447143a
Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems – a review. Mitigation and Adaptation Strategies for Global Change, 11, 403–427, https://doi.org/10.1007/s11027-005-9006-5
Li, S., Zhang, Y., Yan, W., & Shangguan, Z. (2018). Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty
clay soil. Soil and Tillage Research, 183, 100–108, https://doi.org/10.1016/j.still.2018.06.006
Liu, X. H., Han, F. P., & Zhang, X. C. (2012). Effect of biochar on soil aggregates in the Loess Plateau: Results from incubation experiments. International Journal of Agriculture and Biology, 14(6), 975–979.
Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., & Paz-ferreiro, J. (2013). Biochar’ s effect on crop productivity and the dependence on experimental conditions — a meta-analysis of literature data. Plant Soil, 373, 583-594. https://doi.org/10.1007/s11104-013-1806-x
Liu, Zhengang, Zhang, F., & Wu, J. (2010). Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel, 89(2), 510–514. https://doi.org/10.1016/j.fuel.2009.08.042
Liu, Zuxiang, Chen, X., Jing, Y., Li, Q., Zhang, J., & Huang, Q. (2014). Catena effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena, 123, 45–51, https://doi.org/10.1016/j.catena.2014.07.005
Lu, S., Sun, F., & Zong, Y. (2014). Catena Effect of rice husk biochar and coal fl y ash on some physical properties of expansive clayey soil (Vertisol). Catena, 114, 37–44, https://doi.org/10.1016/j.catena.2013.10.014
Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333(1), 117–128, https://doi.org/10.1007/s11104-010-0327-0
Mandal, S., Verma, B. C., Ramkrushna, G. L., Singh, R. K., & Rajkhowa, D. J. (2015). Characterization of biochar obtained from weeds and its effect on soil properties of North Eastern Region of India. Journal of Environmental Biology, 36(2), 499–505.
Mašek, O. N. D. Ř. E. J. (2013). 16 Biochar and Carbon Sequestration.
Mukherjee, A., & Lal, R. (2013). Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions. Agronomy, 3(2), 313–339, https://doi.org/10.3390/agronomy3020313
Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. S. (2009). Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil Science, 74(2), 105–112, https://doi.org/10.1097/SS.0b013e3181981d9a
Ouyang, L., Yu, L., & Zhang, R. (2014). Effects of amendment of different biochars on soil carbon mineralisation and sequestration. Soil Research, 52(1), 46–54. https://doi.org/10.1071/SR13186
Pandian, K., Subramaniayan, P., & Gnasekaran, P. (2016). Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Archives of Agronomy and Soil Science, 62(9), 1293–1310, https://doi.org/10.1080/03650340.2016.1139086
Pandit, N. (2018). The effect of biochar in combination with mineral or organic fertilizers on crop production in Nepal.
Peake, L. R., Reid, B. J., & Tang, X. (2014). Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma, 235–236, 182–190, https://doi.org/10.1016/j.geoderma.2014.07.002
Pratiwi, A. P. E., & Shinogi, Y. yuki. (2016). Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy and Water Environment, 6–10, https://doi.org/10.1007/s10333-015-0521-z
Šimanský, V., Horák, J., Igaz, D., Jonczak, J., Markiewicz, M., Felber, R., Rizhiya, E. Y., & Lukac, M. (2016). How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? Biologia (Poland), 71(9), 989–995, https://doi.org/10.1515/biolog-2016-0122
Sousa, A. A. T. C., & Figueiredo, C. C. (2016). Sewage sludge biochar: Effects on soil fertility and growth of radish. Biological Agriculture and Horticulture, 32(2), 127–138, https://doi.org/10.1080/01448765.2015.1093545
Sparks, L. D. (2003). Environmental Soil Chemistry. Academic Press, San Diego, CA, USA.
Spokas, A. K. (2014). Review of the stability of biochar in soils: predictability of O : C molar ratios Review of the stability of biochar in soils: predictability of
O: C molar ratios. Carbon Management, 1:2, 289-303, https://doi.org/10.4155/cmt.10.32
Sun, J., Lian, F., Liu, Z., Zhu, L., & Song, Z. (2014). Ecotoxicology and Environmental Safety Biochars derived from various crop straws: Characterization and Cd (II) removal potential. Ecotoxicology and Environmental Safety, 106, 226–231. https://doi.org/10.1016/j.ecoenv.2014.04.042
Tomasz, G., Palmowska, J., Zaleski, T., & Gondek, K. (2016). Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, 11–20, https://doi.org/10.1016/j.geoderma.2016.06.028
Usman, A. R. A., Al-wabel, M. I., Ok, Y. S., Al-harbi, A., Al-faraj, A., & Al-omran, A. (2016). Conocarpus Biochar Induces Changes in Soil Nutrient Availability. Pedosphere, 26(1), 27–38, https://doi.org/10.1016/S1002-0160(15)60019-4
Utomo, W. H., Soehono, L. A., & Guritno, B. (2011). Effect of biochar on the Release and Loss of Nitrogen from Urea Fertilization. Journal of Agriculture Science and Food Technology, 7, 127–132.
Wang, X., Zhou, W., Liang, G., Song, D., & Zhang, X. (2015). Science of the Total Environment Characteristics of maize biochar with different pyrolysis
temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. Science of the Total Environment, 538, 137–144, https://doi.org/10.1016/j.scitotenv.2015.08.026
Yoo, G., Kim, Y. J., Lee, Y. O., & Ding, W. (2015). Investigation of Greenhouse Gas Emissions from the Soil Amended with Rice Straw Biochar. KSCE Journal of Civil Engineering, 20, 2197-2207, https://doi.org/10.1007/s12205-015-0449-2
Yu, O. Y., Raichle, B., & Sink, S. (2013). Impact of biochar on the water holding capacity of loamy sand soil. International Journal of Energy and Environmental Engineering, 4(1), 1–9, https://doi.org/10.1186/2251-6832-4-44
Yuan, J., & X, R. (2011). The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27(1), 110–115, https://doi.org/10.1111/j.1475-2743.2010.00317.x
Zhai, L., Caiji, Z., & Liu, J. (2014). Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biology and Fertility of Soils, 51, 113–122, https://doi.org/10.1007/s00374-014-0954-3
Zhang, A., Cheng, G., Hussain, Q., Zhang, M., Feng, H., Dyck, M., Sun, B., Zhao, Y., Chen, H., Chen, J., & Wang, X. (2017). Field Crops Research Contrasting effects of straw and straw – derived biochar application on net global warming potential in the Loess Plateau of China. Field Crops Research, 205, 45–54. https://doi.org/10.1016/j.fcr.2017.02.006
Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., & Crowley, D. (2010). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems and Environment, 139(4), 469–475, https://doi.org/10.1016/j.agee.2010.09.003
Zhang, A., Liu, Y., & Pan, G. (2011). Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil, 351, 263–275, https://doi.org/10.1007/s11104-011-0957-x
Zheng, H., Wang, Z., Deng, X., Herbert, S., & Xing, B. (2013). Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil.
Geoderma, 206, 32–39, https://doi.org/10.1016/j.geoderma.2013.04.018
Zwieten, L. Van, Kimber, S., & Morris, S. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327, 235–246, https://doi.org/10.1007/s11104-009-0050-x
Published
How to Cite
Issue
Section
Copyright (c) 2021 Agriculture and Environmental Science Academy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.