Precision nitrogen management on crop production: A review

Dipika Bhusal 1 , Dhirendra Pratap Thakur 2

1   Agriculture and Forestry University, Chitwan, Nepal, 2Institute of Agriculture and Animal Science, Kathmandu, NEPAL
2   Agriculture and Forestry University, Chitwan, Nepal, 2Institute of Agriculture and Animal Science, Kathmandu, NEPAL

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2022.0702016

doi

Abstract

Nitrogen (N) is the most essential nutrient for plants because of its value as a growth and yield determinant nutrient. Significant, and rapid increase in N application rates have occurred, but often at the expense of poor usage performance. The study enlights the causes of nitrogen loss in the environment, the need for its management and ways for precision management. Researches reveal only 50% of the applied fertilizer is uptake by the plants and the remaining is lost in the form of different pathways like denitrification, leaching, and volatilization that is very harmful for the biodiversity. Nitrogen management necessitates extra caution in its application in order to avoid major losses and optimize performance. Precision nitrogen management has been found especially useful to achieve the goals of improved productivity and higher nitrogen use efficiency (NUE). Leaf color charts, sensor based green seeker and chlorophyll meter like decisions tools in precision nitrogen management help in assisting the prediction of the need for N in the crops leading to higher nitrogen use efficiency without any reduction of yield. On the other hand, the use of urea briquettes deep placement supplements the nitrogen management techniques for higher NUE and crop productivity as well as sustain agriculture by avoiding the leakage of nitrogen to the environment thereby reducing the pollution. Hence, the synchronization between crop demand and nitrogen supply using the tools helps to minimize nitrogen losses, maximize nitrogen use efficiency and increase productivity.

Keywords:

Decision tool, Environment, Nitrogen, Nitrogen use efficiency

Downloads

Download data is not yet available.

References

Abit, J., & Arnall, B. (2017). Using the GreenSeeker™ Handheld Sensor and Sensor-Based Nitrogen Rate Calculator. Oklahoma State University Extension

Retrieved May 19, 2021, from https://extension.okstate.edu/fact-sheets/using-the-greenseeker-handheld-sensor-and-sensor-based-nitrogen-rate-calculator.html

Alam, M. M., Ladha, J. K., Khan, S. R., Foyjunnessa, Harun-ur-Rashid, Khan, A. H., & Buresh, R. J. (2005). Leaf Color Chart for Managing Nitrogen Fertilizer in Lowland Rice in Bangladesh. AgronomyJournal,97(3), 949–959, https://doi.org/https://doi.org/10.2134/agronj2004.0206

Anas, M., Liao, F., Verma, K. K., Sarwar, M. A., Mahmood, A., Chen, Z. L., Li, Q., Zeng, X. P., Liu, Y., & Li, Y. R. (2020). Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 53(1), 1–20, https://doi.org/10.1186/s40659-020-00312-4

Arregui, L. M., & Quemada, M. (2008). Strategies to Improve Nitrogen Use Efficiency in Winter Cereal Crops under Rainfed Conditions. Agronomy Journal, 100(2), 277–284, https://doi.org/https://doi.org/10.2134/agronj2007.0187

Balasubramanian, V., Morales, A. C., Cruz, R. T., & Abdulrachman, S. (1999). On-farm adaptation of knowledge-intensive nitrogen management technologies for rice systems. Nutrient Cycling in Agroecosystems, 53(1), 59—69, https://doi.org/10.1023/a:1009744605920

Baral, B. R., Pande, K. R., Gaihre, Y. K., Baral, K. R., Sah, S. K., Thapa, Y. B., & Singh, U. (2021). Real-time nitrogen management using decision support-tools

increases nitrogen use efficiency of rice. Nutrient Cycling in Agroecosystems, 119(3), 355–368, https://doi.org/10.1007/s10705-021-10129-6

Bijay-Singh, Varinderpal-Singh, Purba, J., Sharma, R. K., Jat, M. L., Yadvinder-Singh, Thind, H. S., Gupta, R. K., Chaudhary, O. P., Chandna, P., Khurana, H. S., Kumar, A., Jagmohan-Singh, Uppal, H. S., Uppal, R. K., Vashistha, M., & Gupta, R. (2015). Site-specific fertilizer nitrogen management in irrigated transplanted rice (Oryza sativa) using an optical sensor. In Precision agriculture: Vol. v. 16. Springer US.

Chatterjee, D., Mohanty, S., Guru, P. K., Swain, C. K., Tripathi, R., Shahid, M., Kumar, U., Kumar, A., Bhattacharyya, P., Gautam, P., Lal, B., Dash, P. K., & Nayak, A. K. (2018). Comparative assessment of urea briquette applicators on greenhouse gas emission, nitrogen loss and soil enzymatic activities in tropical lowland rice. Agriculture, Ecosystems & Environment, 252, 178–190, https://doi.org/https://doi.org/10.1016/j.agee.2017.10.013

Cho, Y.-I., Jiang, W., Chin, J.-H., Piao, Z., Cho, Y.-G., McCouch, S., & Koh, H.-J. (2007). Identification of QTLs associated with physiological nitrogen use efficiency in rice. Molecules and Cells, 23(1), 72–79.

Climate Smart Agriculture. (2018). Urea Deep Placement (UDP) Technique. Climate Technology Center and Network. Retrieved May 19, 2021, from https://www.ctc-n.org/products/urea-deep-placement-udp-technique

Costa, R. (2019). GreenSeeker tool might help reduce your nitrogen costs. Michigan State University Extension. Retrieved May 19, 2021, from https://www.canr.msu.edu/news/greenseeker-tool-might-help-reduce-your-nitrogen-costs

Dobermann, A. R. (2005). Nitrogen Use Efficiency – State of the Art, IFA International Workshop on Enhanced-Efficiency Fertilizers. University of Nebraska, 17, https://digitalcommons.unl.edu/agronomyfacpub/316

Evenson, R. E., & Gollin, D. (2003). Assessing the impact of the green revolution, 1960 to 2000. Science (New York, N.Y.), 300(5620), 758–762,

https://doi.org/10.1126/science.1078710

Gaihre, Y. K., Singh, U., Islam, S. M. M., Huda, A., Islam, M. R., Sanabria, J., Satter, M. A., Islam, M. R., Biswas, J. C., Jahiruddin, M., & Jahan, M. S. (2018). Nitrous oxide and nitric oxide emissions and nitrogen use efficiency as affected by nitrogen placement in lowland rice fields. Nutrient Cycling in Agroecosystems, 110(2), 277–291, https://doi.org/10.1007/s10705-017-9897-z

Galloway, J. N., Schlesinger, W. H., Levy, H., Michaels, A., & Schnoor, J. L. (1995). Nitrogen fixation : Anthropogenic enhancement-environmental Nitrogen

fixation: Anthropogenic enhancement-environmental response. January.

Johnson, C., Albrecht, G., Ketterings, Q., Beckman, J., & Stockin, K. (2005). Nitrogen Basics – The Nitrogen Cycle. Cornell University Cooperative Extension. Retrieved May 5, 2021, from http://cceonondaga.org/resources/nitrogen-basics-the-nitrogen-cycle

Killpack, S. C., & Buchholz, D. (2017). Nitrogen in the Environment: Leaching. University of Missouri Extension. Retrieved May 18, 2021, from https://extension.missouri.edu/wq262

Lee, S. (2021). Recent Advances on Nitrogen Use Efficiency in Rice. Agronomy, 11(4), 753, https://doi.org/10.3390/agronomy11040753

Lin, F. F., Qiu, L. F., Deng, J. S., Shi, Y. Y., Chen, L. S., & Wang, K. (2010). Investigation of SPAD meter-based indices for estimating rice nitrogen status. Computers and Electronics in Agriculture, 71, S60–S65, https://doi.org/https://doi.org/10.1016/j.compag.2009.09.006

Maiti, D., Das, D. K., Karak, T., & Banerjee, M. (2004). Management of nitrogen through the use of leaf color chart (LCC) and soil plant analysis development (SPAD) or chlorophyll meter in rice under irrigated ecosystem. The ScientificWorld Journal, 4, 838–846, https://doi.org/10.1100/tsw.2004.137

Manikyam, N., Guru, P. K., Naik, R., & Diwan, P. (2020). Physical and engineering properties of urea briquettes relevant to design of ICAR-NRRI urea

briquette applicator. International Journal of Chemical Studies, 8(1), 1891–1893, https://doi.org/10.22271/chemi.2020.v8.i1ab.8542

Martens, D. A. (2005). DENITRIFICATION (D. B. T.-E. of S. in the E. Hillel (ed.); pp. 378–382). Elsevier. https://doi.org/https://doi.org/10.1016/B0-12-348530-4/00138-7

Nguyen, H. T., & Lee, B.-W. (2006). Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. European Journal of Agronomy, 24(4), 349–356, https://doi.org/https://doi.org/10.1016/j.eja.2006.01.001

Perchlik, M., & Tegeder, M. (2017). Improving plant nitrogen use efficiency through alteration of amino acid transport processes. Plant Physiology, 175(1),

–247, https://doi.org/10.1104/pp.17.00608

Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., Thomason, W. E., & Lukina, E. V. (2002). Improving Nitrogen Use Efficiency in Cereal Grain Production with Optical Sensing and Variable Rate Application. Agronomy Journal, 94(4), 815, https://doi.org/10.2134/agronj2002.0815

Uddling, J., Gelang-Alfredsson, J., Piikki, K., & Pleijel, H. (2007). Evaluating the relationship between leaf chlorophyll concentration and SPAD-502

chlorophyll meter readings. Photosynthesis Research, 91(1), 37–46, https://doi.org/10.1007/s11120-006-9077-5

USAID. (2013). Use of Leaf Color Chart (LCC). Retrieved May 19, 2021, from https://pdf.usaid.gov/pdf_docs/PA00K938.pdf

Van Cleemput, O., Zapata, F., & Vanlauwe, B. (2008). Guidelines on Nitrogen Management in Agricultural Systems. Guidelines on Nitrogen Management in Agricultural Systems, 29, 125

Vitosh, M. L., Johnson, J. W., & Mengel, D. B. (1995). Nitrogen losses from soil. Tri-State Fertilizer Recommendations for Corn, Soybeans, Wheat and Alfalfa, Extension Bulletin E-2567, 2567(July).

Yuan, Z., Cao, Q., Zhang, K., Ata-Ul-Karim, S. T., Tan, Y., Zhu, Y., Cao, W., & Liu, X. (2016). Optimal leaf positions for SPAD meter measurement in rice. Frontiers in Plant Science, 7(MAY2016), 1–10. https://doi.org/10.3389/fpls.2016.00719

Published

2022-06-25

How to Cite

Bhusal, D., & Thakur, D. P. (2022). Precision nitrogen management on crop production: A review. Archives of Agriculture and Environmental Science, 7(2), 267-271. https://doi.org/10.26832/24566632.2022.0702016

Issue

Section

Review Articles