A review on soilless cultivation: The hope of urban agriculture

Dipesh Joshi 1 , Anjal Nainabasti 2 , Rita Bhandari 3 , Prakash Awasthi 4 , Dinanath Banjade 5 , Santoshi Malla 6 , Bishesh Subedi 7

1   Institute of Agriculture and Animal Science, Tribhuvan University, NEPAL
2   Institute of Agriculture and Animal Science, Tribhuvan University, NEPAL
3   Institute of Agriculture and Animal Science, Tribhuvan University, NEPAL
4   Institute of Agriculture and Animal Science, Tribhuvan University, NEPAL
5   Institute of Agriculture and Animal Science, Tribhuvan University, NEPAL
6   Institute of Agriculture and Animal Science, Tribhuvan University, NEPAL
7   Institute of Agriculture and Animal Science, Tribhuvan University, NEPAL

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2022.0703022

doi

Abstract

The cultivation of plants without using soil as a rooting medium is known as soilless farming. Depending on the requirement and type of crop, there are several soilless systems, including hydroponic, aeroponic, vertical farming, and others. The rate at which megacities are growing is worrying. As a result, urban agriculture needs to undergo a revolution in order to address the problem of food scarcity and hunger. These significant quantitative and qualitative food concerns can be solved by soilless farming in urban environments. In greenhouses and tunnels, about 3.5% of the world's crops are produced utilizing soilless, hydroponic farming methods. People who reside in deserts, the arctic, and other difficult-to-farm places can build up hydroponic farms. Since there is no soil, there are fewer insects and weeds. Vegetables, fruits, flowers, and medicinal plants are among the crops grown in soilless or hydroponic systems. Growth media is used in soilless culture methods in place of soil. As growth media, inorganic or organic substrates (barks, coconut coir, coconut soil, fleece, marc, peat) are used. Aquaponics in Nepal has a promising future because it is still in its early phases and is expected to thrive and expand well. As a result, a variety of crops are produced year, increasing income. Soilless cultures are thought of as a recently found approach to agricultural development, yet they are extremely difficult to put into practice.

Keywords:

Aeroponic, Aquaponics, Hydroponics, Soilless Agriculture

Downloads

Download data is not yet available.

References

Abad, M., Fornes, F., Carrión, C., Noguera, V., Noguera, P., Maquieira, Á., & Puchades, R. (2005). Physical properties of various coconut coir dusts compared to peat. HortScience, 40(7), 2138–2144, https://doi.org/10.21273/hortsci.40.7.2138

Arenas, M., Vavrina, C. S., Cornell, J. A., Hanlon, J. A., & Hochmuth, G. J. (2002). Coir as an alternative to peat in media for tomato transplant production. HortScience, 37(2), 309–312, https://doi.org/10.21273/hortsci.37.2.309

Azad, K. N., Salam, M. A., & Azad, K. N. (2016). Aquaponics in Bangladesh: current status and future prospects. Journal of Bioscience and Agriculture Research, 669–677, https://doi.org/10.18801/JBAR.070216.79

Barman, N. C., Hasan, M. M., Islam, R., & Banu, N. A. (2016). A review on present status and future prospective of hydroponics technique. Plant Environment Development, 5(2), 1–7.

Barrett, G. E., Alexander, P. D., Robinson, J. S., & Bragg, N. C. (2016a). Achieving environmentally sustainable growing media for soilless plant cultivation systems – A review. In Scientia Horticulturae (Vol. 212, pp. 220–234), https://doi.org/10.1016/j.scienta.2016.09.030

Barrett, G. E., Alexander, P. D., Robinson, J. S., & Bragg, N. C. (2016b). Achieving environmentally sustainable growing media for soilless plant cultivation systems – A review. Scientia Horticulturae, 212, 220–234, https://doi.org/10.1016/J.SCIENTA.2016.09.030

Beeson, R. C. (1996). Composted Yard Waste as a Component of Container Substrates. Journal of Environmental Horticulture, 14(3), 115–121, https://doi.org/10.24266/0738-2898-14.3.115

Bhandari, N. S., Jatav, V., & Goshwami, V. (2016). Substrate Culture : Future Perspective for Horticultural Crops Production. Advancesinlifesciencesjournal.Com, 5(22), 10268–10271. http://advancesinlifesciencesjournal.com/upload/15-6686_(Narendra_Singh_Bhandar.pdf

Blok, C., & Wever, G. (2008). Experience with selected physical methods to characterize the suitability of growing media for plant growth. Acta Horticulturae, 779, 239–249, https://doi.org/10.17660/actahortic.2008.779.29

Buer, C. S., Correll, M. J., Smith, T. C., Towler, M. J., Weathers, P. J., Nadler, M., Seaman, J., & Walcerz, D. (1996). Development of a nontoxic acoustic window nutrient-mist bioreactor and relevant growth data. In Vitro Cellular and Developmental Biology - Plant, 32(4), 299–304, https://doi.org/10.1007/BF02822703

Butler, J. D., & Oebker, N. F. (1962). Hydroponics as a hobby : growing plants without soil. (Book, 1962) [WorldCat.org]. Urbana, Ill. : University of Illinois, College of Agriculture, Extension Service in Agriculture and Home Economics,. https://www.ideals.illinois.edu/bitstream/handle/2142/33041/1129561.pdf

Dalsgaard, J., Lund, I., & R. T. A. (2013). undefined. (2012). Farming different species in RAS in Nordic countries: Current status and future perspectives. Elsevier. https://doi.org/10.1016/j.aquaeng.2012.11.008

De Kreij, C., Voogt, W., & Naaldwijk, R. B. (2003). Nutrient solutions and water quality for soilless cultures. https://library.wur.nl/WebQuery/wurpubs/fulltext/456342

Despommier, D. (2013). Farming up the city: The rise of urban vertical farms. In Trends in Biotechnology (Vol. 31, Issue 7, pp. 388–389). https://doi.org/10.1016/j.tibtech.2013.03.008

Di Lorenzo, R., Pisciotta, A., Santamaria, P., & Scariot, V. (2013). From soil to soil-less in horticulture: Quality and typicity. Italian Journal of Agronomy, 8(4), 255–260, https://doi.org/10.4081/IJA.2013.E30

Diver, S., & Rinehart, L. (2000). Aquaponics-Integration of hydroponics with aquaculture. https://backyardaquaponics.com/Travis/aquaponic.pdf

Dubbeling, M., Zeeuw, H., & Veenhuizen, R. (2010). Cities, poverty and food: multi-stakeholder policy and planning in urban agriculture. https://www.cabdirect.org/cabdirect/abstract/20113234439

El-Kazzaz, K., Tech, A. E.-K.-A. R. (2017). Soilless agriculture a new and advanced method for agriculture development: an introduction. Researchgate.Net, 3(2). https://doi.org/10.19080/ARTOAJ.2017.03.555610

Evans, M. R., & Stamps, R. H. (1996). Growth of Bedding Plants in Sphagnum Peat and Coir Dust-Based Substrates. Journal of Environmental Horticulture, 14(4), 187–190, https://doi.org/10.24266/0738-2898-14.4.187

FAO & ITPS. (2015). Status of the World’s Soil Resources – Technical Summary. In Status of the World’s Soil Resources. Food and Agriculture Organization of the United Nations. https://hal.archives-ouvertes.fr/hal-01241064/

Farrell, M., & Jones, D. L. (2010). Food waste composting: Its use as a peat replacement. Waste Management, 30(8–9), 1495–1501, https://doi.org/10.1016/j.wasman.2010.01.032

Foley, J. A., Ramankutty, N., & Brauman, K. A. (2011). Solutions for a cultivated planet. Nature.Com, 478. https://doi.org/10.1038/nature10452

Grafiadellis, I., Mattas, K., Maloupa, E., I. T. (2000). An economic analysis of soilless culture in gerbera production. Journals.Ashs.Org, 35(2), 300–303, https://journals.ashs.org/hortsci/view/journals/hortsci/35/2/article-p300.xml

Gruda, N. (2012). Sustainable peat alternative growing media. Acta Horticulturae, 927, 973–980, https://doi.org/10.17660/actahortic.2012.927.120

Gruda, N., & Schnitzler, W. H. (2001). Physical properties of wood fiber substrates and their effect on growth of lettuce seedlings (Lactuca sativa L. var. capitata L.). Acta Horticulturae, 548, 415–423, https://doi.org/10.17660/actahortic.2001.548.48

Gurung, T. B. (2016). Role of inland fishery and aquaculture for food and nutrition security in nepal. In Agriculture and Food Security (Vol. 5, Issue 1). https://doi.org/10.1186/s40066-016-0063-7

Gyawali, S., Chaudhary, P., Chaudhary, M., Gurung, S., & Pathak, R. (2019). Comparative evaluation of Broad Leaf Mustard (BLM) under different boron concentrations in outdoor barrel aquaponics at IAAS, Paklihawa. Nepjol.Info, 7(3), 359–364, https://doi.org/10.3126/ijasbt.v7i3.25698

Hayden, A. L. (2006). Aeroponic and hydroponic systems for medicinal herb, rhizome, and root crops. HortScience, 41(3), 536–538, https://doi.org/10.21273/hortsci.41.3.536

Hoitink, H. A. J., Stone, A. G., & Han, D. Y. (1997). Suppression of plant diseases by composts. HortScience, 32(2), 184–187, https://doi.org/10.21273/hortsci.32.2.184

Jackson, B. E. J., Wright, R. D., & Seiler, J. R. (2009). Changes in chemical and physical of pine tree substrate and bark during long-term nursery production. HortScience, 44(3), 791–799, https://doi.org/10.21273/hortsci.44.3.791

Jackson, B. E., Wright, R. D., & Barnes, M. C. (2008). Pine Tree Substrate, Nitrogen Rate, Particle Size, and Peat Amendment Affect Poinsettia Growth and Substrate Physical Properties. HortScience, 43(7), 2155–2161, https://doi.org/10.21273/HORTSCI.43.7.2155

Karki, R. (2018). Vermi-biochar as alternative to peat as growing substrate for greenhouse vegetables. https://brage.inn.no/inn-xmlui/handle/11250/2502637

Khan, F. A. (2018). A Review an Hydroponic Greenhouse Cultivation for Sustainable Agriculture. International Journal of Agriculture, Environment and Food Sciences, 2(2), 59–66. https://doi.org/10.31015/jaefs.18010

Martin-Laurent, F., Lee, S. K., Tham, F. Y., He, J., Diem, H. G., & Durand, P. (1997). A new approach to enhance growth and nodulation of acacia mangium through aeroponic culture. Biology and Fertility of Soils, 25(1), 7–12, https://doi.org/10.1007/S003740050272

Martin, M. H., & Marschner, H. (1988). The Mineral Nutrition of Higher Plants. The Journal of Ecology, 76(4), 1250. https://doi.org/10.2307/2260650

Michel, J. (2013). The physical properties of peat : a key factor for modern growing media . To cite this version : HAL Id : hal-00729716 The physical properties of peat : a key factor for modern growing media. Hal-Agrocampus-Ouest. Archives, January 2015. https://hal-agrocampus-ouest.archives-ouvertes.fr/file/index/docid/729716/filename/map_06_02.pdf

Nappi, P., & Barberis, R. (1993). Compost as growing medium: chemical, physical and biological aspects. Acta Horticulturae, 342, 249–256, https://doi.org/10.17660/actahortic.1993.342.28

Nielsen, N. E. (1984). Crop production in recirculating nutrient solution according to the principle of regeneration. I: Proceedings Sixth International Congress on Soilless Culture, Lunteren,1984, 421–446. https://agris.fao.org/agris-search/search.do?recordID=XE8581878

Nir, I. (1982). Growing plants in aeroponics growth system. Acta Horticulturae, 126, 435–448, https://doi.org/10.17660/actahortic.1982.126.49

Noble, R., & Coventry, E. (2005). Suppression of soil-borne plant diseases with composts: A review. In Biocontrol Science and Technology (Vol. 15, Issue 1, pp. 3–20). https://doi.org/10.1080/09583150400015904

Olday, F. C. (1972). Mineral Nutrition of Plants Mineral Nutrition of Plants: Principles and Perspectives Emanuel Epstein. BioScience, 22(12), 739–739, https://doi.org/10.2307/1296301

Olympios, C. M. (1999). Overview of soilless culture: advantages, constraints and perspectives for its use in Mediterranean countries. Cahiers Options Méditerranéennes, 31, 307–324, http://om.ciheam.org/om/pdf/c31/CI020854.pdf

Peterson, L. A., & Krueger, A. R. (1988). An Intermittent Aeroponics System. Crop Science, 28(4), 712–713, https://doi.org/10.2135/CROPSCI1988.0011183X002800040033X

Pignata, G., Casale, M., and Nicola, S. (2017). Water and Nutrient Supply in Horticultural Crops Grown in Soilless Culture: Resource Efficiency in Dynamic and Intensive Systems. 183–219, https://doi.org/10.1007/978-3-319-53626-2_7

Poole, R. T. (1970). Rooting response of four ornamental species propagated in various media. Proceedings of the Florida State Horticultural Society, 1969, 82, 393–397, https://www.cabdirect.org/cabdirect/abstract/19710301646

Pradhan, B., & Deo, B. (2019). Soilless farming - The next generation green revolution. Current Science, 116(5), 728–732, https://doi.org/10.18520/cs/v116/i5/728-732

Prasad, M. (1997). Physical, chemical and biological properties of coir dust. Acta Horticulturae, 450, 21–29, https://doi.org/10.17660/actahortic.1997.450.1

Putra, P. A., & Yuliando, H. (2015). Soilless Culture System to Support Water Use Efficiency and Product Quality: A Review. Agriculture and Agricultural Science Procedia, 3, 283–288, https://doi.org/10.1016/j.aaspro.2015.01.054

Rainbow, A. (2009). The use of green compost in the production of container nursery stock in the UK: Challenges and opportunities. Acta Horticulturae, 819, 27–32, https://doi.org/10.17660/ActaHortic.2009.819.2

Rakocy, J. (2007). Ten Guidelines for Aquaponic Systems. Aquaponics Journal, 3rd Quarte(46), 14–17. https://www.leaffin.com/wp-content/uploads/2017/11/Aquaponics-Journal-10-Guidelines.pdf

Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2006). Recirculating aquaculture tank production systems: Aquaponics- integrating fish and plant culture. SRAC Publication - Southern Regional Aquaculture Center, 454, 16. https://shareok.org/bitstream/handle/11244/319795/oksd_srac_454_2016-07.pdf?sequence=1

Raviv, M. (2013). Composts in growing media: What’s new and what’s next? Acta Horticulturae, 982, 39–52, https://doi.org/10.17660/ActaHortic.2013.982.3

Raviv, M., Lieth, J., practice, M. R.S. culture theory and, and 2008, undefined. (2007). Significance of soilless culture in agriculture. Lieth.Ucdavis.Edu. http://lieth.ucdavis.edu/pub/pub072_ravivlieth_soillessculture_ch01.pdf

Rezaei Nejad, A., & Ismaili, A. (2014). Changes in growth, essential oil yield and composition of geranium (Pelargonium graveolens L.) as affected by growing media. Journal of the Science of Food and Agriculture, 94(5), 905–910, https://doi.org/10.1002/JSFA.6334

Robertson, R. A. (1993). Peat, horticulture and environment. Biodiversity and Conservation, 2(5), 541–547, https://doi.org/10.1007/BF00056747

Ros, M., Hernandez, M. T., Garcia, C., Bernal, A., & Pascual, J. A. (2005). Biopesticide effect of green compost against fusarium wilt on melon plants. Journal of Applied Microbiology, 98(4), 845–854, https://doi.org/10.1111/j.1365-2672.2004.02508.x

Sabahy, A., Bhansawi, A., Ali, S., & El-Haddad, Z. (2015). Physical and chemical properties of some soilless media. Misr Journal of Agricultural Engineering, 32(1), 381–392, https://doi.org/10.21608/MJAE.2015.98740

Salah, G. M. J. A., & Romanova, A. (2017). Coconut fibre as an alternative growth compound for Living Green Walls. http://gala.gre.ac.uk/id/eprint/17422/

Salam, M. A., Asadujjaman, M., & Rahman, M. S. (2013). Aquaponics for improving high density fish pond water quality through raft and rack vegetable production. World Journal of Fish and Marine Sciences, 5(3), 251–256, https://doi.org/10.5829/idosi.wjfms.2013.05.03.7274

Sanderson, K. C. (1980). Use of sewage-refuse compost in the production of ornamental plants. HortScience, 15(2), 173–177, https://agris.fao.org/agris-search/search.do?recordID=US8009551

Sardare, M., In, S. A.I. J. of R., & 2013, U. (2019). A review on plant without soil-hydroponics. ResearchGate. Net.

Savvas, D, & Passam, H. (2002). Hydroponic production of vegetables and ornamentals.

Savvas, D., & Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry - A review. European Journal of Horticultural Science, 83(5), 280–293, https://doi.org/10.17660/EJHS.2018/83.5.2

Schmilewski, G. (2009). Growing medium constituents used in the EU. Acta Horticulturae, 819, 33–46, https://doi.org/10.17660/ActaHortic.2009.819.3

Shishkin, P. V., & Antipova, O. V. (2017). Hydroponics technology to grow plants without soil. Vegetable Crops of Russia, 3, 56–61, https://doi.org/10.18619/2072-9146-2017-3-56-61

Smith, C. (1995). Coir: a viable alternative to peat for potting. Horticulturist (United Kingdom), 4, 24–28. https://agris.fao.org/agris-search/search.do?recordID=GB9609630

Subedi, B., & Shrestha, A. (2020). Overview of pond aquaculture in Nepal. International Journal of Environment, Agriculture and Biotechnology, 5(5), 1215–1219, https://doi.org/10.22161/ijeab.55.4

Sylvia, D., Symbiosis, D. H. (1986). Growth and sporulation of vesicular-arbuscular mycorrhizal fungi in aeroponic and membrane systems. Dalspace.Library.Dal.Ca, 1, 259. https://dalspace.library.dal.ca/bitstream/handle/10222/76866/VOLUME 1-NUMBER 3-1986-PAGE 259.pdf?sequence=1

Treftz, C., Kratsch, H., & Omaye, S. (2015). Hydroponics: A Brief Guide to Growing Food Without Soil. University of Nevada, Reno. https://extension.unr.edu/publication.aspx?PubID=2756

Trejo-Téllez, L. I., & Gómez-Merino, F. C. (2012). Nutrient Solutions for Hydroponic Systems. Hydroponics - A Standard Methodology for Plant Biological Researches. https://doi.org/10.5772/37578

Tzortzakis, N., Nicola, S., Savvas, D., & Voogt, W. (2020). Editorial: Soilless Cultivation Through an Intensive Crop Production Scheme. Management Strategies, Challenges and Future Directions. Frontiers in Plant Science, 11. https://doi.org/10.3389/FPLS.2020.00363/FULL

UN. (2019). Population | United Nations. United Nations. https://www.un.org/en/global-issues/population

Valentinuzzi, F., Pii, Y., Vigani, G., Lehmann, M., Cesco, S., & Mimmo, T. (2015). Phosphorus and iron defciencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria×ananassa. Journal of Experimental Botany, 66(20), 6483–6495, https://doi.org/10.1093/jxb/erv364

van der Gaag, D. J., van Noort, F. R., Stapel-Cuijpers, L. H. M., de Kreij, C., Termorshuizen, A. J., van Rijn, E., Zmora-Nahum, S., & Chen, Y. (2007). The use of green waste compost in peat-based potting mixtures: Fertilization and suppressiveness against soilborne diseases. Scientia Horticulturae, 114(4), 289–297, https://doi.org/10.1016/j.scienta.2007.06.018

Van Os, E. A. (1999). Closed soilless growing systems: A sustainable solution for Dutch greenhouse horticulture. Water Science and Technology, 39(5), 105–112, https://doi.org/10.1016/S0273-1223(99)00091-8

Wani, B. A., Bodha, R. H., & Wani, A. H. (2010). Nutritional and medicinal importance of mushrooms. Journal of Medicinal Plants Research, 4(24), 2598–2604, https://doi.org/10.5897/JMPR09.565

Yuvaraj, M., & Subramanian, K. S. (2016). Prospects of Aeroponics in Agriculture. In Advances in Life Sciences (Vol. 5, Issue 11).

Zobel, R., Tredici, P. Del, Physiology, J. T.P. (1976). Method for growing plants aeroponically. Academic.Oup.Com, 57, 344–346, https://academic.oup.com/plphys/article-abstract/57/3/344/6074863

Published

2022-09-25

How to Cite

Joshi, D., Nainabasti, A., Bhandari, R., Awasthi, P., Banjade, D., Malla, S., & Subedi, B. (2022). A review on soilless cultivation: The hope of urban agriculture . Archives of Agriculture and Environmental Science, 7(3), 473-481. https://doi.org/10.26832/24566632.2022.0703022

Issue

Section

Review Articles