Effect of citric acid (CA) priming and exogenous application on germination and early seedling growth of okra (Abelmoschus esculentus L.) plants under salinity stress condition

Jotirmoy Chakrobortty 1 , Shahin Imran 2 , Md. Asif Mahamud 3 , Prosenjit Sarker 4 , Newton Chandra Paul 5

1   Department of Soil Science, Khulna Agricultural University, Khulna, BANGLADESH
2   Department of Agronomy, Khulna Agricultural University, Khulna, BANGLADESH
3   Department of Agricultural Chemistry, Khulna Agricultural University, Khulna, BANGLADESH
4   Department of Crop Botany, Khulna Agricultural University, Khulna, BANGLADESH
5   Department of Agronomy, Khulna Agricultural University, Khulna, BANGLADESH

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2022.070303

doi

Abstract

Salinity is a significant barrier to the healthy germination of seeds, the development of seedlings and ultimately the yield of crops. Salinity tolerance can be effectively induced through seed priming and exogenous application of various treatment agents. The vegetable crop okra is a healthy and well-liked one worldwide. Literature shows that salt stress negatively disturbs the growth of okra plants. In the present research, we investigated the effects of citric acid (CA) as priming and exogenous agents to alleviate the salinity-inhibited germination and early growth of okra plants. The seeds were pretreated with CA (1 mM and 2 mM) and soaked in distilled water (control) for 60 min. Germinated seeds were grown in hydroponic solution and subjected to salt stress (50 mM and 100 mM NaCl) with three independent replications and same concentrations of CA (1 mM and 2 mM) were exogenously sprayed. Our results showed that, seed priming with 1 mM CA significantly produced the highest percentage of germination (GP), germination index (GI), germination energy (GE), seed vigor index (SVI), radicle length and weight, hypocotyl length and weight, and number of lateral roots while decreased mean germination time of okra seeds while compared to the control treatment. Additionally, the findings demonstrated that salt stress dramatically reduced root and shoot length, plant height, root and shoot fresh weight and dry weight, and relative water content (RWC). Under salt stress, the addition of 1 mM and 2 mM CA significantly increased the RWC, root and shoot length, root and shoot fresh and dry weight, and plant height. These results provide information that CA priming improves germination parameters and exogenous treatments can improve the salt tolerance, and seedling characteristics of okra. Therefore, our results suggest that 1 mM CA can be utilized as a seed priming and exogenous application agent reducing the impacts of salt stress and promoting early seedling development of okra.

Keywords:

Citric acid, Germination, Relative water content, Seed priming, Salinity

Downloads

Download data is not yet available.

References

Abdel Latef, A. A. H., Tahjib-Ul-Arif, M., & Rhaman, M. S. (2021). Exogenous auxin-mediated salt stress alleviation in faba bean (Vicia faba L.). Agronomy, 11(3), 547.

Abdelaal, K. A., EL-Maghraby, L. M., Elansary, H., Hafez, Y. M., Ibrahim, E. I., El-Banna, M., & Elkelish, A. (2019). Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy, 10(1), 26.

Adelakun, O. E., & Oyelade, O. J. (2011). Potential use of okra seed (Abelmoschus esculentus moench) flour for food fortification and effects of processing. In Flour and Breads and Their Fortification in Health and Disease Prevention (pp. 205-212). Academic Press.

Afzal, I., Butt, A., Ur Rehman, H., Ahmad Basra, A. B., & Afzal, A. (2012). Alleviation of salt stress in fine aromatic rice by seed priming. Australian Journal of Crop Science, 6(10), 1401-1407.

Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., Inaba, M., & Murata, N. (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant physiology, 123(3), 1047-1056.

Ashraf, M., & Foolad, M. R. (2005). Pre‐sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non‐saline conditions. Advances in Agronomy, 88, 223-271.

BBS. (2021). Summary Crop Statistics. Bangladesh Bureau of Statistics, Statistical Division, Ministry of Planning, Government People’s Republic of Bangladesh, Dhaka, Bangladesh, pp. 284-286.

Cayuela, E., Pérez‐Alfocea, F., Caro, M., & Bolarin, M. C. (1996). Priming of seeds with NaCl induces physiological changes in tomato plants grown under salt stress. Physiologia Plantarum, 96(2), 231-236.

Cheng, Z., Woody, O. Z., McConkey, B. J., & Glick, B. R. (2012). Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Applied Soil Ecology, 61, 255-263.

Darandeh, N., & Hadavi, E. (2012). Effect of pre-harvest foliar application of citric acid and malic acid on chlorophyll content and post-harvest vase life of Lilium cv. Brunello. Frontiers in Plant Science, 2, 106.

Dilruba, S., Hasanuzzaman, M., Karim, R., & Nahar, K. (2009). Yield response of okra to different sowing time and application of growth hormones. Journal of Horticultural Science & Ornamental Plants, 1, 10-14.

Ehsan, S., Ali, S., Noureen, S., Mahmood, K., Farid, M., Ishaque, W. & Rizwan, M. (2014). Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicology and Environmental Safety, 106, 164-172.

Eidyan, B., Hadavi, E., & Moalemi, N. (2014). Pre-harvest foliar application of iron sulfate and citric acid combined with urea fertigation affects growth and vase life of tuberose (Polianthes tuberosa L.) ‘Por-Par’. Horticulture, Environment, and Biotechnology, 55(1), 9-13.

El-Beltagi, H. S., Ahmed, S. H., Namich, A. A. M., & Abdel-Sattar, R. R. (2017). Effect of salicylic acid and potassium citrate on cotton plant under salt stress. Fresenius Environmental Bulletin, 26(1A), 1091-1100.

Elkhalifa, A. E. O., Alshammari, E., Adnan, M., Alcantara, J. C., Awadelkareem, A. M., Eltoum, N. E., & Ashraf, S. A. (2021). Okra (Abelmoschus esculentus) as a potential dietary medicine with nutraceutical importance for sustainable health applications. Molecules, 26(3), 696.

El-Tohamy, W. A., El-Abagy, H. M., Badr, M. A., & Gruda, N. (2013). Drought tolerance and water status of bean plants (Phaseolus vulgaris L.) as affected by citric acid application. Journal of Applied Botany and Food Quality, 86(1).

Fougere, F., Le Rudulier, D., & Streeter, J. G. (1991). Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots,

bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiology, 96(4), 1228-1236.

Gebaly, S. G., Ahmed, F. M., & Namich, A. A. (2013). Effect of spraying some organic, amino acids and potassium citrate on alleviation of drought stress in cotton plant. Journal of Plant Production, 4(9), 1369-1381.

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930.

Hidayah, A., Nisak, R. R., Susanto, F. A., Nuringtyas, T. R., Yamaguchi, N., & Purwestri, Y. A. (2022). Seed Halopriming Improves Salinity Tolerance of Some Rice Cultivars During Seedling Stage. Botanical Studies, 63(1), 1-12.

Hu, L., Zhang, Z., Xiang, Z., & Yang, Z. (2016). Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum). Frontiers in Plant Science, 7, 179.

Isayenkov, S. V. (2012). Physiological and molecular aspects of salt stress in plants. Cytology and Genetics, 46(5), 302-318.

Krotz, R. M., Evangelou, B. P., & Wagner, G. J. (1989). Relationships between cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension cells. Plant Physiology, 91(2), 780-787.

Lopez-Bucio, J., De la Vega, O. M., Guevara-Garcia, A., & Herrera-Estrella, L. (2000). Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nature Biotechnology, 18(4), 450-453.

Mailloux, R. J., Lemire, J., Kalyuzhnyi, S., & Appanna, V. (2008). A novel metabolic network leads to enhanced citrate biogenesis in Pseudomonas fluorescens exposed to aluminum toxicity. Extremophiles, 12(3), 451-459.

Mansour, M. M. F., Ali, E. F., & Salama, K. H. A. (2019). Does seed priming play a role in regulating reactive oxygen species under saline conditions? Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms, 437-488.

Mer, R. K., Prajith, P. K., H. Pandya, D., & Pandey, A. N. (2000). Effect of salts on germination of seeds and growth of young plants of Hordeum vulgare, Triticum aestivum, Cicer arietinum and Brassica juncea. Journal of Agronomy and Crop Science, 185(4), 209-217.

Mostofa, M. G., & Fujita, M. (2013). Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology, 22(6), 959-973.

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment, 25(2), 239-250.

Nouri, M., & Haddioui, A. (2021). Improving seed germination and seedling growth of Lepidium sativum with different priming methods under arsenic stress. Acta Ecologica Sinica, 41(1), 64-71.

Rhaman, I.U., Ali, S., Alam, M., Basir, A., Adnan, M., Malik, M.F.A., Shah, A.S., & Ibrahim, M. (2016). Effect of seed priming on germination performance and yield of okra (Abelmoschus esculentus L.). Pakistan Journal of Agricultural Research 29, 250-259.

Rhaman, M. S., Imran, S., Karim, M. M., Chakrobortty, J., Mahamud, M. A., Sarker, P., Tahjib-Ul-Arif, M., Robin, A. H., Ye, W., Murata, Y., & Hasanuzzaman, M. (2021b). 5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress. Plant Cell Reports, 10, 1-9.

Rhaman, M. S., Imran, S., Rauf, F., Khatun, M., Baskin, C. C., Murata, Y., & Hasanuzzaman, M. (2021a). Seed Priming with Phytohormones: An Effective Approach for the Mitigation of Abiotic Stress. Plants, 10, 37.

Rhaman, M. S., Imran, S., Rauf, F., Khatun, M., Baskin, C. C., Murata, Y., & Hasanuzzaman, M. (2020). Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants, 10(1), 37.

Sedghi, M., Nemati, A., & Esmaielpour, B. (2010). Effect of seed priming on germination and seedling growth of two medicinal plants under salinity. Emirates Journal of Food and Agriculture, 130-139.

Shaddad, M. A. K. (2010). Salt tolerance of crop plants. Journal of Stress Physiology & Biochemistry, 6(3), 64-90.

Sheteiwy, M. S., Shao, H., Qi, W., Daly, P., Sharma, A., Shaghaleh, H. & Lu, H. (2021). Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Journal of the Science of Food and Agriculture, 101(5), 2027-2041.

Sun, Y. L., & Hong, S. K. (2010). Effects of citric acid as an important component of the responses to saline and alkaline stress in the halophyte Leymus chinensis (Trin.). Plant Growth Regulation, 64, 129-139.

Tahjib-Ul-Arif, M., Zahan, M. I., Karim, M. M., Imran, S., Hunter, C. T., Islam, M. S., & Murata, Y. (2021). Citric acid-mediated abiotic stress tolerance in plants. International journal of Molecular Sciences, 22(13), 7235.

Tania, S. S., Rhaman, M. S., & Hossain, M. M. (2020). Hydro-priming and halo-priming improve seed germination, yield and yield contributing characters of okra (Abelmoschus esculentus L.). Tropical Plant Research, 7, 86-93.

Tesfaye, M., Dufault, N. S., Dornbusch, M. R., Allan, D. L., Vance, C. P., & Samac, D. A. (2003). Influence of enhanced malate dehydrogenase expression by alfalfa on diversity of rhizobacteria and soil nutrient availability. Soil Biology and Biochemistry, 35(8), 1103-1113.

Vwioko, E. D. (2021). Performance of Soybean (Glycine max L.) Variety in Salt-treated Soil Environment Following Salicylic Acid Mitigation. NISEB Journal, 13(2).

Xie, H., Bai, G., Lu, P., Li, H., Fei, M., Xiao, B. G., & Yang, D. H. (2022). Exogenous citric acid enhances drought tolerance in tobacco (Nicotiana tabacum). Plant Biology, 24(2), 333-343.

Xiu, J. I. N., Haoting, C. H. E. N., Yu, S. H. I., Longqiang, B. A. I., Leiping, H. O. U., & Yi, Z. H. A. N. G. (2021). Effect of citric acid seed priming on the growth and physiological characteristics of tomato seedlings under low phosphorus stress. Chinese Journal of Eco-Agriculture, 29(7), 1159-1170.

Yadav, R., Saini, P. K., Pratap, M., & Tripathi, S. K. (2018). Techniques of seed priming in field crops. International Journal of Chemical Studies, 6, 1588-1594.

Yakoubi, F., Babou, F. Z., & Belkhodja, M. (2019). Effects of Gibberellic and Abscisic Acids on Germination and Seedling Growth of Okra (Abelmoschus esculentus L.) under Salt Stress. Pertanika Journal of Tropical Agricultural Science, 42(2).

Zanotti, R. F., Lopes, J. C., Motta, L. B., de Freitas, A. R., & Mengarda, L. H. G. (2013). Tolerance induction to saline stress in papaya seeds treated with potassium nitrate and sildenafil citrate. Semina: Ciências Agrárias, 1(34), 3669-3673.

Zeng, F., Mao, Y., Cheng, W., Wu, F., & Zhang, G. (2008). Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environmental Pollution, 153(2), 309-314.

Zhang, F., Yu, J., Johnston, C. R., Wang, Y., Zhu, K., Lu, F., & Zou, J. (2015). Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. PLoS One, 10(10), e0140620.

Published

2022-09-25

How to Cite

Chakrobortty, J., Imran, S., Mahamud, M. A., Sarker, P., & Paul, N. C. (2022). Effect of citric acid (CA) priming and exogenous application on germination and early seedling growth of okra (Abelmoschus esculentus L.) plants under salinity stress condition. Archives of Agriculture and Environmental Science, 7(3), 318-326. https://doi.org/10.26832/24566632.2022.070303

Issue

Section

Research Articles