Molecular genotyping of sweet potato (Ipomoea batatas L. Lam) accessions using microsatellites
Abstract
The experiment was conducted to ascertain the level of genetic diversity in sweet potato accessions using microsatellites. Thirty sweet potato accessions obtained from the International Potato Center (CIP), Kumasi, Ghana, Mozambique, and local germplasm of the National Root Crops Research Institute (NRCRI), Umudike, Abia State, Nigeria, as well as sweet potato vines from local farmers' fields in Jos, Plateau State, and Bauchi State, Nigeria, were analyzed for genetic diversity using five microsatellite markers. The results showed that the polymorphic SSR loci revealed diverse relationship among the sweet potato cultivars, which was grouped into four major clusters by unweighted pair group method analysis (UPGMA) method. Cluster analysis showed a Jaccard co-efficient ranging from 0.0 to 3.0 indicating high genetic diversity. The primers detected a total of 18 alleles and the number of alleles per locus was 4 for IBR-19, IBR-286, IBR-297 and 3 for IBR-16 and IBR-242 with an average of 3.67 alleles per locus. The polymorphic information content (PIC) of the markers varied from 0.35 to 0.72 with an average of 0.497. Marker IBR-19 revealed the highest PIC of 0.72, while marker IBR-297 had the lowest PIC of 0.35. Observed heterozygosity ranged from 0.32 to 0.89 with a mean of 0.675 across the five SSR loci. The results from the Analysis of molecular variance (AMOVA) which was used to quantify the diversity level and genetic relationship among the thirty sweet potato accessions indicated that a high diversity was mostly distributed within the populations for sweet potato accessions (75.12%) and (15.67%) among the populations.
Keywords:
Diversity, Genotyping, Microsatellites, Polymorphism, Sweet potatoDownloads
References
Anderson, E. F. (1993). Plants and people of the golden triangle. Ethnobotany of the Hill Tribes of Northern Thailand. Dioscorides Press, Portland.
Cabral, B. L. R., Souza, J. A. B., Ando, A., Veasey, E. A., & Cardoso, E. R. (2002). Isoenzymatic variability of cassava accessions from different regions in Brazil. Scientia Agriculture, 59, 521-527.
Chipungu, F., Changadeya, W., Ambali, A., Saka, J., Mahungu, N., & Mkumbira, J. (2017). Analysis of micronutrient variations among sweet potato (Ipomoea batatas [L.] Lam) genotypes in Malawi. Journal of Agricultural Biotechnology and Sustainable Development, 9(4), 22-35.
CIP - Centro Internacional de la Papa (2018). Sweetpotato I. http://www.cipotato.org/sweetpotato
Cobos, R., & M. T. Martin, (2008). “Molecular characterisation of Phaeomoniella chlamydospora isolated from grapevines in Castilla y León (Spain),” Phytopathologia Mediterranea, 47(1), 20–27
FAOSTAT (2013). Food and Agriculture Organization of the United Nations. Rome, Italy. Accessed on 07/08/2014. Feka
Faraldo, M. F., Silva, R. M., Ando, A., & Martins, P. S. (2000). Variabilidade genetica de etnovariedades de mandioca em regioes geograficas do Brasil. Scientia Agricola, 57, 499-505.
Ghislain M., Nunez J., delRosarion Herrera M., Pignataro J., Guzman F., Bonierbale M., & Spooner, D. M. (2009). Robust and highly informative microsatellite-based genetic identity kit for potato. Molecular Breeding, 23, 377-388.
Gwandu, C., Tairo, F., Mneney, E., & Kullaya, A. (2012). Characterization of Tanzanian elite sweet potato genotypes for sweet potato virus disease (SPVD)
resistance and high dry matter content using simple sequence repeat (SSR) markers. African Journal of Biotechnology, 11(40), 9582-9590.
Heng-Sheng, L., Chih-Yun, C., Song-Bin, C., Gwo-Ing, L., & Chang-Sheng, K. (2012). Genetic diversity in the foxtail millet (setaria italica) germplasm as determined by agronomic traits and microsatellite markers. Australian Journal of Crop Science, 6(2), 342-349.
Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de laSocciete Vaudoise des Sciences Naturelles, 44, 223-270.
Jia, X., Zhang, Z., Liu, Y., Zhang, C., Shi, Y., Song, Y., Wang, T., & Li, Y. (2009). Development and genetic mapping of SSR markers in foxtail millet [sataria italica (L.) p.Beauv.]. Theoretical and Applied Genetics, 118, 821-829.
Kiarie S. M., Karanja L. S., Obonyo M. A., & Wachira F. N. (2016). Application of SSR markers in determination of putative resistance to SPVD and genetic diversity among orange flashed sweet potato. Journal of Advanced Biology and Biotechnology, 9(2), 1-10
Koussao, S., Gracen, V., Asante, I., Danquah, E. Y., Ouedraogo, J. T., Baptiste, T. J., &Vianney, T. M. (2014). Diversity analysis of sweetpotato (Ipomoea batatas [L] Lam) germplasm from Burkina Faso using morphological and simple sequence repeats markers. African Journal of Biotechnology, 13(6), 729-742.
Magoon, M. L., Krishnar, R., & Bai, K. V. (1970). Cytological evidence on the origin of sweet potato. Theoretical and Applied Genetics, 10, 360–366, https://doi.org/10.1007/BF00285415
Martin, F. M., & Jones, A. (1986). Breeding sweetpotatoes. Plant Breeding Reviews, 4, 313-345.
Martín, L. L. E., Sáenz de Miera, & Martín, M. T. (2014) AFLP and RAPD characterization of Phaeoacremonium aleophilum associated with Vitis vinifera decline in Spain. Journal of Phytopathology, 162( 4), 245–257.
Munoz-Rodriguez, P., Carruthers, T., Wood, J. R. I., Williams, B. R. M., Weitemier, K., & Kronmiller, B. (2018). Reconciling conflicting phylogenies in the origin of sweet potato and dispersal to Polynesia. Current Biology, 28, 1–11, https://doi.org/10.1016/j.cub.2018.03.020
Oliveira, E. J., Pádua, J. G., Zucchi, M. I., Vencovsky, R., & Vieira, M. L. C. (2006). Origin, evolution and genome distribution of microsatellites. Genetics and Molecular Biology, 29(2), 294-307.
Oliveira, M. S. P., & Silva, K. J. D. (2008). Diferenciação genética entre procedências de açaizeiro por marcadores moleculares RAPD e SSR. Revista Brasileira de Fruticultura, 30(2), 438-443.
Rajapakse, S., Nilmalgoda S. D., Molnar, M., Ballard, R. E., Austin, D. F., & Bohac J. R. (2004). Phylogenetic relationships of the sweet potato in Ipomoea series Batatas (Convolvulaceae) based on nuclear β-amylase gene sequences. Molecular and Phylogenetic Evolution, 30, 623–632
Rodriguez-Bonilla,L., Cuevas, H. E., Montero-Rojas, M., Bird-Pico, F., & Luciano-Rosario, D. (2014), Assessment of Genetic Diversity of Sweet Potato in Puerto Rico. PLoS One, 9(12), e116184. https://doi.org/10.1371
Rohlf, F. J. (2000). NTSYS-pc Numerical taxonomy and multivariate system (v.2.1). User guide Exeter Software, Setauket, New York USA ,31 pp.
Roullier, C., Duputié, A., Wennekes, P., Benoit, L., Manuel, V., Rossel, G., Tay, D., McKey, D., & Lebot, V. (2013b). Disentangling Ipomoea batatas polyploidization history: Consequences for the domesticated genepool. PLoS One 8(5), e62707.
Roullier, C., Kambouo, R., Paofa, J., McKey, D., & Lebot, V. (2013c). On the origin of sweet potato (Ipomoea batatas (L.) Lam) genetic diversity in New Guinea, a secondary centre of diversity. Heredity, 110(6), 594-604.
Roullier, C., Rossel, G., Tay, D., Mckey, D. and Lebot, V. (2011). Combining chloroplast and nuclear microsatellites to investigate origin and dispersal of new world sweetpotato landraces. Molecular Ecology, 20, 3965-3977, https://doi.org/10.1111/j.1365-294X.2011.05229. x
Roullier, C., Benoit, L., Mckey, D. B. and Lebot, V. (2013a). Historical collections reveal patterns of diffusion of sweetpotato in oceania obscured by modern plant movements and recombination. Proceedings of the National Academy of Sciences, 110(6), 2205–2210.
Sambatti, J. B. M., Martins, P. S., & Ando, A. (2000). Distribuição da diversidade isoenzimática e morfológica da mandioca na agricultura autóctone de Ubatuba. Scientia Agriculture, 57, 75-80.
Somé, K., G., V., Asante, I., Danquah, E. Y., Ouedraogo, T. J., Baptiste, T. J., Jerome, B., & Vianney, T. M. (2014). Diversity analysis of sweetpotato (Ipomoea batatas [L.] Lam) germplasm from Burkina Faso using morphological and simple sequence repeats markers. African Journal of Biotechnology, 13(6),729-742.
Tseng, Y. T., Lo, H., & Hwang, S. Y. (2002), Genotyping and assessment of genetic relationships in elite polycross breeding cultivars of sweet potato in Taiwan based on SAMPL polymorphisms. Botanical Bulletin of Academia Sinica, 43, 99-105.
Tumwegamire, S., Rubaihayo, P. R., Labonte, D. R., Diaz, F., Kapinga, R., Mwanga, R. O., & Gruneberg, W. J. (2011). Genetic diversity in white- and orange-fleshed sweetpotato farmer varieties from East Africa evaluated by simple sequence repeat markers. Crop Science, 51, 1132-1142, https://doi.org/10.2135/cropsci2010.07.0407
Veasey, E. A., Silva, J. R. Q., Rosa, M. S., Borges, A., Bressan, E. A., & Peroni, N. (2007). Phenology and morphological diversity of sweet potato (Ipomoea batatas) landraces of the Vale do Ribeira. Sci Agriculture, 64, 416-427.
Yada, B., Tukamuhabwa, P., Wajala, B., Kim, D. J., & Skilton, R. A. (2010). Characterizing Ugandan sweet potato germplasm using fluorescent labeled simple sequence repeat markers. Horticulture Science, 45(2), 225-230.
Yang, J., Moeinzadeh M-H, Kuhl, H., Helmuth, J., Xiao, P., Liu, G., Zheng, J., Sun, Z., Fan, W., Deng, G., Wang, H., Hu, F., Fernie, A. R., Timmermann, B., Zhang, P., & Vingron, M. (2016). The haplotype-resolved genome sequence of hexaploid Ipomoea batatas reveals its evolutionary history. bioRxiv 064428.
Zhang, D. P., Carbajulca, D., Ojeda, L., Rossel, G., Milla, S., Herrera, C., & Ghislain, M., (1999). Microsatellite analysis of genetic diversity in sweet potato varieties from Latin America. CIP Program Report 1999 - 2000. International Potato Center, Lima, Peru, 295-301.
Zhang, D., Cervantes, J., Hauman, Z., Carey, E., & Ghislain, M. (2000). Assessing genetic diversity of sweet potato (Ipomoea batatas (L.) Lam.) cultivars from tropical America using AFLP. Genetic Resource and Crop Evolution, 47(6), 659-665.
Zhang, D., Rossel, G., Kriegner, A., & Hijmans, R. (2004). AFLP assessment of diversity in sweet potato from Latin America and the Pacific region: its implications on the dispersal of the crop. Genetic Resource and Crop Evolution, 51, 115-120.
Zohary, D. (2004). Unconscious selection and the evolution of domesticated plants. Econ. Bot. 58:5-10.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Agriculture and Environmental Science Academy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.