Reactions of anthocyanin rich in maize genotypes to low temperature treatments according to photosynthesis, gas exchange properties, and bio-active compounds
Abstract
Low temperatures during the early growing stages limit the productivity of maize considerably. Investigating responses of different coloured corns (Zea mays L.) to chilling may reveal alternative genotypes which can be preferred under early sowing conditions of water-shortage farming areas. The aim of this study is determining whether the color factor affects the tolerance to chilling in maize and which properties are effective on the low temperature tolerance. We exposed corns with different colours (white, yellow, red, purple) to different temperatures [8°C, 12°C, 16°C, 25°C (control)] and analysed the effects of temperature on morphological, physiological, bio-active properties and stress indicators. Using 14-day old seedlings, we noted that purple corn had the highest seedling length, seedling weight, chlorophyll content, stomatal conductance, chlorophyll B and total phenolic content in the 8°C and followed by white (photosynthesis rate, chlorophyll fluorescence, chlorophyll A and carotenoids), yellow (transpiration rate, sub stomatal CO2, and total antioxidant activity) and red corns (water use efficiency, total anthocyanin content and proline). On the other hand, white corn maintained its superiority in other treatments, receiving the highest values in 9 of 17 characteristics at 12°C, in 8 of 17 at 16°C and in 10 of 17 in the control. Performance of purple corn in the 8°C was the most remarkable one in all genotypes and treatments. Based on our results, it has been concluded that white and purple corns are more chilling tolerant genotypes and may be alternative for early sowing conditions in drought farming areas.
Keywords:
Anthocyanins, Chilling, Photosynthesis, Phenolic compounds, ProlineDownloads
References
Allen, D., & Ort, D. (2001). Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science, 6(1), 36-42, https://doi.org/10.1016/S1360-1385(00)01808-2
Anjum, S., Wang, L., Farooq, M., Hussain, M., Xue, L., & Zou, C. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197(3), 177-185, https://doi.org/10.1111/j.1439-037X.2010.00459.x.
Aroca, R., Vernieri, P., Irigoyen, J., Sánchez-Dıaz, M., Tognoni, F., & Pardossi, A. (2003). Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Science, 165(3), 671-679. https://doi.org/10.1016/S0168-9452(03)00257-7
Aydınoglu, F., & Akgul, B. (2019). Investigation of microRNA-mediated redox regulation in leaf growth regions during chiling stress tolerance of maize (Zea mays L.). Anadolu Journal of Agricultural Sciences, 34(2). 172-183, https://doi.org/10.7161/omuanajas.482710
Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207, https://doi.org/10.1007/BF00018060
Ben-Haj-Salah, H., & Tardieu, F. (1995). Temperature affects expansion rate of maize leaves without change in spatial distribution of cell length (analysis of the coordination between cell division and cell expansion). Plant Physiology, 109(3), 861-870, https://doi.org/10.1104/pp.109.3.861
Brugičre, N., Dubois, F., Limami, A., Lelandais, M., Roux, Y., Sangwan, R., & Hirel, B. (1999). Glutamine synthetase in the phloem plays a major role in controlling proline production. The Plant Cell, 11(10), 1995-2011, https://doi.org/10.1105/tpc.11.10.1995
Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98(4), 1222-1227, https://doi.org/10.1104/pp.98.4.1222
Cervilla, L. M., Blasco, B., Rios, J. J., Rosales, M. A., Sánchez-Rodríguez, E., Rubio-Wilhelmi, M. M., Romero, L., & Ruiz Juan, M. (2012). Parameters symptomatic for boron toxicity in leaves of tomato plants. Journal of Botany, 2012, 1-17 https://www.hindawi.com/journals/jb/2012/726206/
Chalker-Scott, L. (1992). Disruption of an ice-nucleation barrier in cold hardy Azalea buds by sublethal heat stress. Annals of Botany, 70(5), 409-418, https://doi.org/10.1093/oxfordjournals.aob.a088496
Chalker‐Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology, 70(1), 1-9,
https://doi.org/10.1111/j.1751-1097.1999.tb01944.x
Es' kin, B. (1960). Anthocyanin and plant frost resistance. Botanical Science, 130, 58-60. https://www.cabdirect.org/cabdirect/abstract/19606604136
Farooq, M., Aziz, T., Wahid, A., Lee, D. & Siddique, K. (2009). Chilling tolerance in maize: agronomic and physiological approaches. Crop and Pasture Science, 60(6), 501-516, https://doi.org/10.1071/CP08427
Foot, J., Caporn, S., Lee, J., & Ashenden, T. (1996). The effect of long‐term ozone fumigation on the growth, physiology and frost sensitivity of Calluna vulgaris. New Phytologist, 1996(133), 503-511, https://doi.org/10.1111/j.1469-8137.1996.tb01918.x
Foyer, C., Vanacker, H., Gomez, L., & Harbinson, J. (2002). Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures. Plant Physiology and Biochemistry, 40(6-8), 659-668, https://doi.org/10.1016/S0981-9428(02)01425-0
Guerra-Peraza, O., Leipner, J., Reimer, R., Nguyen, H., Stamp, P., & Fracheboud, Y. (2012). Temperature at night affects the genetic control of acclimation to cold in maize seedlings. Maydica, 56(4), 367-376, https://journals-crea.4science.it/index.php/maydica/article/view/677
Hasan, S. A., Rabei, S. H., Nada, R. M., & Abogadallah, G. M. (2017). Water use efficiency in the drought-stressed sorghum and maize in relation to expression of aquaporin genes. Biologia Plantarum, 61(1), 127-137, https://doi.org/10.1007/s10535-016-0656-9.
Hodges, D., Andrews, C., Johnson, D., & Hamilton, R. (1997). Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. Journal of Experimental Botany, 48(5), 1105-1113, https://doi.org/10.1093/jxb/48.5.1105
Ishikawa, M. (1984). Deep supercooling in most tissues of wintering Sasa senanensis and its mechanism in leaf blade tissues. Plant Physiology, 75(1), 196-202, https://doi.org/10.1104/pp.75.1.196
Kapcum, C., & Uriyapongson, J. (2018). Effects of storage conditions on phytochemical and stability of purple corn cob extract powder. Food Science and Technology, 38(1), 301-305, https://doi.org/10.1590/1678-457X.23217
Khampas, S., Lertrat, K., Lomthaisong, K., & Suriharn, B. (2013). Variability in phytochemicals and antioxidant activity in corn at immaturity and physiological maturity stages. International Food Research Journal, 20(6), 3149-3157. http://www.ifrj.upm.edu.my/20%20(06)%202013/25%20IFRJ%2020%20(06)%202013%20Bhalang%20221.pdf.
Khamphasan, P., Lomthaisong, K., Harakotr, B., Ketthaisong, D., Scott, M., Lertrat, K., & Suriharn, B. (2018). Genotypic variation in anthocyanins, phenolic compounds, and antioxidant activity in cob and husk of purple field corn.
Agronomy, 8(11), 1-15, https://www.mdpi.com/2073-4395/8/11/271/htm
Kocsy, G., Von Ballmoos, P., Rüegsegger, A., Szalai, G., Galiba, G. & Brunold, C. (2001). Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury. Plant Physiology, 127(3), 1147-1156, https://doi.org/10.1104/pp.010107
Konrade, D. & Klava, D. (2017). Total content of phenolics and antioxidant activity in crispbreads with plant by-product addition. Rural Sustainability Research, 38(333), 24-31, https://doi.org/10.1515/plua-2017-0009
Kosová, K., Haisel, D., & Tichá, I. (2005). Photosynthetic performance of two maize genotypes as affected by chilling stress. Pant Soil and Environment, 51(2005), 206-212. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.613.5095&rep=rep1&type=pdf.
Lee, T., Lur, H., & Chu, C. (1993). Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. I. Endogenous abscisic acid levels Plant, Cell and Environment, 16, 481–490. https://doi.org/10.1111/j.1365-3040.1993.tb00895.x
Long, S. (1983). C4 photosynthesis at low temperatures. Plant, Cell & Environment, 6(4), 345-363, https://doi.org/10.1111/1365-3040.ep11612141
Long , S., Humphries, S., & Falkowski, P. (1994). Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 633-662, https://doi.org/10.1146/annurev.pp.45.060194.003221
Ma, R., Kaundun, S., Tranel, P., Riggins, C., McGinness, D., Hager, A., Hawkes, T., McIndoe, E., & Riechers, D. (2013). Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp. Plant Physiology, 163(1), 363-377, https://doi.org/10.1104/pp.113.223156
Madhava, R. K., & Sresty, T. V. S. (2000). Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science, 157(1), 113-128. https://doi.org/10.1016/S0168-9452(00)00273-9
Markhart, A., Fiscus, E., Naylor, A., & Kramer, P. (1979). Effect of temperature on water and ion transport in soybean and broccoli systems. Plant Physiology, 64(1), 83-87, https://doi.org/10.1104/pp.64.1.83
McWilliam, J., Kramer, P. & Musser, R. (1982). Temperature-induced water stress in chilling-sensitive plants. Functional Plant Biology, 9(3), 343-352, https://doi.org/10.1071/PP9820343
Melkonian, J., Yu, L., & Setter, T. (2004). Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance. Journal of Experimental Botany, 55(403), 1751-1760,https://doi.org/10.1093/jxb/erh215
Miedema, P. (1982). The effects of low temperature on Zea mays. Advances in Agronomy, 35(1982), 93-128, https://doi.org/10.1016/S0065-2113(08)60322-3
Nguyen, H., Leipner, J., Stamp, P. & Guerra-Peraza, O. (2009). Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiology and Biochemistry, 47(2), 116-122, https://doi.org/10.1016/j.plaphy.2008.10.010
Nishida, I., & Murata, N. (1996). Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annual Review of Plant Physiology and Plant Molecular Biology, 1996(47), 541-568, https://doi.org/10.1146/annurev.arplant.47.1.541
Ortiz-Lopez, A., Nie, G., Ort, D., & Baker, N. (1990). The involvement of the photoinhibition of photosystem II and impaired membrane energization in the reduced quantum yield of carbon assimilation in chilled maize. Planta, 181(1), 78-84, https://doi.org/10.1007/BF00202327
Özdemir, E. (2021). Silicon stimulated bioactive and physiological metabolisms of purple corn (Zea mays indentata L.) under deficit and well-watered conditions. 3 Biotech, 11(7), 2-13. https://doi.org/10.1007/s13205-021-02873-x
Pardossi, A., Vernieri, P., & Tognoni, F. (1992). Involvement of abscisic acid in regulating water status in Phaseolus vulgaris L. during chilling. Plant Physiology, 100(3), 1243-1250, http://doi:10.1104/pp.100.3.1243
Parveen, A., Liu, W., Hussain, S., Asghar, J., Perveen, S., & Xiong, Y. (2019). Silicon priming regulates morpho-physiological growth and oxidative metabolism in maize under drought stress. Plants, 8(431), 1-14, https://doi.org/10.3390/plants8100431
Pietrini, F., Iannelli, M., & Massacci, A. (2002). Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo‐inhibitory risks at low temperature, without further limitation to photosynthesis. Plant, Cell & Environment, 25(10), 1251-1259, https://doi.org/10.1046/j.1365-3040.2002.00917.x
Ramazan, S., Qazi, H., Dar, Z. ,& John, R. (2021). Low temperature elicits differential biochemical and antioxidant responses in maize (Zea mays) genotypes with different susceptibility to low temperature stress. Physiology and Molecular Biology of Plants, 27(6), 1395-1412, https://doi.org/10.1007/s12298-021-01020-3
Schöner, S. & Krause, G.(1990). Protective systems against active oxygen species in spinach: response to cold acclimation in excess light. Planta, 180(3), 383-389, https://doi.org/10.1007/BF00198790
Smith, A. (1909). On the internal temperature of leaves in tropical insolation, with special reference to the effect of their colour on temperature: also observations on the periodicity of the appearance of young coloured leaves growing in the Peradeniya Gardens. Annals of the Royal Botanical Garden, Peradeniya, 4, 229-298, https://ci.nii.ac.jp/naid/10012483334/
Sowiński, P., Rudzińska-Langwald, A., & Kobus, P. (2003). Changes in plasmodesmata frequency in vascular bundles of maize seedling leaf induced by growth at sub-optimal temperatures in relation to photosynthesis and assimilate export. Environmental and Experimental Botany, 50(2), 183-196,
https://doi.org/10.1016/S0098-8472(03)00021-2
Tian, X., Paengkoum, P., Paengkoum, S., Chumpawadee, S., Ban, C., & Thongpea, S. (2019). Purple corn (Zea mays L.) stover silage with abundant anthocyanins transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats. Journal of Dairy Science, 102(1), 413-418. https://doi.org/10.3168/jds.2018-15423
Tsuda, T., Shiga, K., Ohshima, K., Kawakishi, S., & Osawa, T. (1996). Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochemical Pharmacology, 52(7), 1033-1039, https://doi.org/10.1016/0006-2952(96)00421-2
Tsuda, T., Watanabe, M., Ohshima, K., Norinobu, S., Choi, S., Kawakishi, S. ,& Osawa, T., 1994. Antioxidative activity of the anthocyanin pigments cyanidin 3-O-. beta.-D-glucoside and cyanidin. Journal of Agricultural and Food Chemistry, 42(11), 2407-2410, https://pubs.acs.org/doi/pdf/10.1021/jf00047a009
Urias-Lugo, D., Heredia, J., Serna-Saldivar, S., Muy-Rangel, M. & Valdez-Torres, J.
(2015). Total phenolics, total anthocyanins and antioxidant capacity of native and elite blue maize hybrids (Zea mays L.). CyTA-Journal of Food, 13(3), 336-339.
Verheul, M., Van Hassel, P., & Stamp, P. (1995). Comparison of maize inbred lines differing in low temperature tolerance: effect of acclimation at suboptimal temperature on chloroplast functioning. Annals of Botany, 76(1), 7-14, https://doi.org/10.1006/anbo.1995.1072
Vernieri, P., Lenzi, A., Figaro, M., Tognoni, F., & Pardossi, A. (2001). How the roots contribute to the ability of Phaseolus vulgaris L. to cope with chilling-induced water stress. Journal of Experimental Botany, 52(364), 2199-2206. https://doi.org/10.1093/jexbot/52.364.2199
Vernieri, P., Pardossi, A., & Tognoni, F. (1991). Influence of chilling and drought on water relations and abscisic acid accumulation in bean. Functional Plant Biology, 18(1), 25-35, https://doi.org/10.1071/PP9910025
Waqas, M., Wang, X., Zafar, S., Noor, M., Hussain, H., & Farooq, M. (2021). Thermal stresses in maize: effects and management strategies. Plants, 10(2), 1-23, https://doi.org/10.3390/plants10020293
Warrington, I., & Kanemasu, E. (1983). Corn growth response to temperature and photoperiod I. seedling emergence, tassel initiation, and anthesis 1. Agronomy Journal, 75(5), 749-754, https://doi.org/10.2134/agronj1983.00021962007500050008x
Wolfe, J. (1978). Chilling injury in plants-the role of membrane lipid fluidity. Plant, Cell & Environment, 1(4), 241-247, https://doi.org/10.1111/j.1365-3040.1978.tb02036.x
Yang, Z., & Zhai, W. (2010). Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innovative Food Science & Emerging Technologies, 11(1), 169-176,
https://www.sciencedirect.com/science/article/pii/S1466856409001015
Zaidi, P., Yadav, M., Maniselvan, P., Khan, R., Shadakshari, T., Singh, R., & Pal, D. (2010). Morpho-physiological traits associated with cold stress tolerance in tropical maize (Zea mays L.). Maydica, 55(2010), 201-208, https://repository.cimmyt.org/xmlui/bitstream/handle/10883/3113/94593.pdf.
Zhang, H., Zhang, J., Xu, Q., Wang, D., Di, H., Huang, J., Yang, X., Wang, Z., Zhang, L. & Dong, L. (2020). Identification of candidate tolerance genes to low-temperature during maize germination by GWAS and RNA-seq approaches. BMC Plant Biology, 20, 1-17, https://doi.org/10.1186/s12870-020-02543-9
Zhao, Y., Han, Q., Ding, C., Huang, Y., Liao, J., Chen, T., Feng, S., Zhou, L., Zhang, Z., & Chen, Y. (2020). Effect of low temperature on chlorophyll biosynthesis and chloroplast biogenesis of rice seedlings during greening. International Journal of Molecular Sciences, 21(4), 1-22, https://doi.org/10.3390/ijms21041390.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Agriculture and Environmental Science Academy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.