Blast resistance (Pi54) introgression in temperate rice (Oryza sativa L.) K343 using marker assisted backcrossing
Abstract
In hill rice ecologies, Magnaporthe oryzae causes rice blasts and a significant biotic constraint. The study was aimed to develop rice blast-resistant lines/varieties through marker-assisted selection (MAS) by using the Pi54 gene, which provides resistance against the most prominent blast fungus isolate (PLP-1). The blast resistance gene Pi54 from the indica rice genotype DHMAS has been inserted into the genetic makeup of the temperate rice variety K343 in the current study. Three SSR markers (TRS26, TRS33, and RM206) are closely linked to the Pi54 locus used in this study. Marker RM206, located 0.7cM from the Pi54 gene, distinguished between donor and recipient alleles and co-segregated with the target gene. Thus, RM206 is used for Pi54 gene foreground selection. Sixty-one plants have the homozygous allele for the Pi54 in BC1F2, accounting for roughly 50% of the homozygous population. Polymorphic genome-wide SSR assessment of the BC1F2 genetic stock (K343*2/DHMAS) revealed recurrent parent genome (RPG) recovery above 75% in 4 plants. Therefore, M. oryzae race PLP-1, the dominant race used in this study, showed high resistance to the resistant response after inoculation.
Keywords:
Magnaporthe oryzae, Marker-Assisted Backcrossing, Pi54, Rice blast, RPGDownloads
References
Baliyan, N., Malik, R., Rani, R., Mehta, K., Vashisth, U., Dhillon, S., & Boora, K. S. (2018). Integrating marker-assisted background analysis with foreground selection for pyramiding bacterial blight resistance genes into Basmati rice. Comptes Rendus - Biologies, 341(1), 1–8, https://doi.org/10.1016/j.crvi.2017.11.003
Bonman, J. M. (1986). Physiologic Specialization of Pyricularia oryzae in the Philippines. Plant Disease, 70(8), 767, https://doi.org/10.1094/pd-70-767
Clarke, J. D. (2009). Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harbor Protocols, 2009(3). https://doi.org/10.1101/PDB.PROT5177
Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1–2), 169–196, https://doi.org/10.1007/s10681-005-1681-5
Dai, X., He, C., Zhou, L., Liang, M., Fu, X. C., Qin, P., Yang, Y., & Chen, L. (2018). Identification of a specific molecular marker for the rice blast-resistant gene Pigm and molecular breeding of thermo-sensitive genic male sterile leaf-color marker lines. Molecular Breeding, 38(6), 1–10, https://doi.org/10.1007/s11032-018-0821-2
Dekkers, J. C. M., & Hospital, F. (2002). The use of molecular genetics in the improvement of agricultural populations. Nature Reviews Genetics, 3(1), 22–32, https://doi.org/10.1038/nrg701
Devanna, B. N., Jain, P., Solanke, A. U., Das, A., Thakur, S., Singh, P. K., ... & Sharma, T. R. (2022). Understanding the dynamics of blast resistance in rice-Magnaporthe oryzae interactions. Journal of Fungi, 8(6), 584, https://doi.org/10.3390/jof8060584
Divya, B., Robin, S., Rabindran, R., Senthil, S., Raveendran, M., & Joel, A. J. (2014). Marker assisted backcross breeding approach to improve blast resistance in Indian rice (Oryza sativa) variety ADT43. Euphytica, 200(1), 61–77, https://doi.org/10.1007/s10681-014-1146-9
Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.
Fjellstrom, R., McClung, A. M., & Shank, A. R. (2006). SSR markers closely linked to the Pi-z locus are useful for selection of blast resistance in a broad array of rice germplasm. Molecular Breeding, 17(2), 149–157, https://doi.org/10.1007/s11032-005-4735-4
Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics research international, 2015. https://doi.org/10.1155/2015/431487
Hangloo, S., Mahdi, G. M. A., Salgotra, R. K. ., & Sharma, M. . (2022). Screening microsatellite markers for establishing parental polymorphism in Indian rice (Oryza sativa L.). Archives of Agriculture and Environmental Science, 7(4), 590-594, https://doi.org/10.26832/24566632.2022.0704017
Helliwell, E. E., Wang, Q., & Yang, Y. (2013). Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnology Journal, 11(1), 33–42, https://doi.org/10.1111/pbi.12004
Hittalmani, S., Parco, A., Mew, T. v., Zeigler, R. S., & Huang, N. (2000). Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theoretical and Applied Genetics, 100(7), 1121–1128, https://doi.org/10.1007/s001220051395
Hospital, F. (2009). Challenges for effective marker-assisted selection in plants. Genetica, 136(2), 303–310, https://doi.org/10.1007/s10709-008-9307-1
Jena, K. K., & Mackill, D. J. (2008). Molecular markers and their use in marker-assisted selection in rice. In Crop Science, 48(4), 1266–1276, https://doi.org/10.2135/cropsci2008.02.0082
Kanchiswamy, C. N., Maffei, M., Malnoy, M., Velasco, R., & Kim, J. S. (2016). Fine-Tuning Next-Generation Genome Editing Tools. Trends in Biotechnology, 34(7), 562–574, https://doi.org/10.1016/j.tibtech.2016.03.007
Khush, G. S., & Jena, K. K. (2009). Current Status and Future Prospects for Research on Blast Resistance in Rice (Oryza sativa L.). Advances in Genetics, Genomics and Control of Rice Blast Disease, 1–10, https://doi.org/10.1007/978-1-4020-9500-9_1
Kumari, A., Das, A., Devanna, B. N., Thakur, S., Singh, P. K., Singh, N. K., & Sharma, T. R. (2013). Mining of rice blast resistance gene Pi54 shows effect of single nucleotide polymorphisms on phenotypic expression of the alleles. European Journal of Plant Pathology, 137(1), 55–65, https://doi.org/10.1007/s10658-013-0216-5
Liu, J., Wang, X., Mitchell, T., HU, Y. A. J. U. N., Liu, X., Dai, L., & Wang, G. L. (2010). Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Molecular Plant Pathology, 11(3), 419–427, https://doi.org/10.1111/j.1364-3703.2009.00607.x
Rani, M. G., & Adilakshmi, D. (2011). Genetic analysis of blast resistance in rice with simple sequence repeats (SSR). Journal of Crop Improvement, 25(3), 232–238, https://doi.org/10.1080/15427528.2011.555834
Rathour, R., Chopra, M., & Sharma, T. R. (2008). Development and validation of microsatellite markers linked to the rice blast resistance gene Pi-z of Fukunishiki and Zenith. Euphytica, 163(2), 275–282, https://doi.org/10.1007/s10681-008-9646-0
Ratna Madhavi, K., Rambabu, R., Abhilash Kumar, V., Vijay Kumar, S., Aruna, J., Ramesh, S., Sundaram, R. M., Laha, G. S., Sheshu Madhav, M., Ravindra babu, V., & Prasad, M. S. (2016). Marker assisted introgression of blast (Pi-2 and Pi-54) genes in to the genetic background of elite, bacterial blight resistant indica rice variety, Improved Samba Mahsuri. Euphytica, 212(2), 331–342, https://doi.org/10.1007/s10681-016-1784-1
Sarao, N. K., Vikal, Y., Singh, K., Joshi, M. A., & Sharma, R. C. (2010). SSR marker-based DNA fingerprinting and cultivar identification of rice (Oryza sativa L.) in Punjab state of India. Plant Genetic Resources: Characterisation and Utilisation, 8(1), 42–44, https://doi.org/10.1017/S1479262109990128
Servin, B., Martin, O. C., Mézard, M., & Hospital, F. (2004). Toward a theory of marker-assisted gene pyramiding. Genetics, 168(1), 513–523, https://doi.org/10.1534/genetics.103.023358
Sharma, M., Abdullah, G. M., Salgotra, R. K., Hangloo, S., Singh, A. K., Sharma, V., & Singh, A. (2021). Genetic diversity analysis in rice (Oryza sativa L.) germplasm of Jammu region of Jammu and Kashmir. Indian Journal of Genetics and Plant Breeding, 81(04), 35-43, https://doi.org/10.31742/ISGPB.81.4.5
Sharma, T. R., Madhav, M. S., Singh, B. K., Shanker, P., Jana, T. K., Dalal, V., Pandit, A., Singh, A., Gaikwad, K., Upreti, H. C., & Singh, N. K. (2005). High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Molecular Genetics and Genomics, 274(6), 569–578, https://doi.org/10.1007/s00438-005-0035-2
Sharma, T. R., Rai, A. K., Gupta, S. K., Vijayan, J., Devanna, B. N., & Ray, S. (2012). Rice Blast Management Through Host-Plant Resistance: Retrospect and Prospects. Agricultural Research, 1(1), 37–52, https://doi.org/10.1007/s40003-011-0003-5
Singh, V. K., Singh, A., Singh, S. P., Ellur, R. K., Choudhary, V., Sarkel, S., Singh, D., Krishnan, S. G., Nagarajan, M., Vinod, K. K., Singh, U. D., Rathore, R., Prashanthi, S. K., Agrawal, P. K., Bhatt, J. C., Mohapatra, T., Prabhu, K. V., & Singh, A. K. (2012). Incorporation of blast resistance into ‘PRR78’, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crops Research, 128, 8–16, https://doi.org/10.1016/j.fcr.2011.12.003
Skamnioti, P., & Gurr, S. J. (2009). Against the grain: safeguarding rice from rice blast disease. Trends in Biotechnology, 27(3), 141–150,
https://doi.org/10.1016/j.tibtech.2008.12.002
Tang, T., Lu, J., Huang, J., He, J., McCouch, S. R., Shen, Y., Kai, Z., Purugganan, M. D., Shi, S., & Wu, C. I. (2006). Genomic variation in rice: Genesis of highly polymorphic linkage blocks during domestication. PLoS Genetics, 2(11), 1824–1833, https://doi.org/10.1371/journal.pgen.0020199
Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S., & McCouch, S. (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 11(8), 1441–1452,
https://doi.org/10.1101/gr.184001
Thulasinathan, T., Kambale, R., Ayyenar, B., Manonmani, S., & Muthurajan, R. (2020). Evaluation of blast resistance genes Pi9 and Pi54 in rice against local isolates of Tamil Nadu. Electronic Journal of Plant Breeding, 11(4), 1153–1158, https://doi.org/10.37992/2020.1104.186
van Berloo, R. (2008). GGT 2.0: versatile software for visualization and analysis of genetic data. Journal of Heredity, 99(2), 232–236.
Vasudevan, K., Gruissem, W., & Bhullar, N. K. (2015). Identification of novel alleles of the rice blast resistance gene Pi54. Scientific Reports, 5(1), 1–12, https://doi.org/10.1038/srep15678
Vijay Kumar, S., Rambabu, R., Bhaskar, B., Madhavi, K. R., Srikanth, S., Prakasam, V., Sundaram, R. M., Sheshu Madhav, M., Subba Rao, L. V., & Prasad, M. S. (2018). Introgression of durable blast resistance gene Pi54 into indica rice cv. samba mahsuri, through Marker Assisted Backcross Breeding. Electronic Journal of Plant Breeding, 9(2), 705–715, https://doi.org/10.5958/0975-928X.2018.00084.4
Wu, Y., Xiao, N., Yu, L., Pan, C., Li, Y., Zhang, X., Liu, G., Dai, Z., Pan, X., & Li, A. (2015). Combination patterns of major R genes determine the level of resistance to the M. oryzae in rice (Oryza sativa L.). PLoS ONE, 10(6), e0126130. https://doi.org/10.1371/journal.pone.0126130
Xiao, G., Yang, J., Zhu, X., Wu, J., & Zhou, B. (2020a). Prevalence of Ineffective Haplotypes at the Rice Blast Resistance (R) Gene Loci in Chinese Elite Hybrid Rice Varieties Revealed by Sequence-Based Molecular Diagnosis. Rice, 13(1), https://doi.org/10.1186/s12284-020-0367-x
Xiao, G., Yang, J., Zhu, X., Wu, J., & Zhou, B. (2020b). Prevalence of Ineffective Haplotypes at the Rice Blast Resistance (R) Gene Loci in Chinese Elite Hybrid Rice Varieties Revealed by Sequence-Based Molecular Diagnosis. Rice, 13(1), 1–13, https://doi.org/10.1186/s12284-020-0367-x
Ye, G., & Smith, K. F. (2008). Marker-assisted Gene Pyramiding for Inbred Line Development: Basic Principles and Practical Guidelines. International Journal of Plant Breeding, 2(1), 1–10.
Zhou, Y., Lei, F., Wang, Q., He, W., Yuan, B., & Yuan, W. (2020). Identification of Novel Alleles of the Rice Blast-Resistance Gene Pi9 through Sequence-Based Allele Mining. Rice, 13(1), 1–15, https://doi.org/10.1186/s12284-020-00442-z

Published
How to Cite
Issue
Section
Copyright (c) 2023 Agriculture and Environmental Science Academy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.