Effects of dietary Cu nanoparticles on growth performance, physiology and bioaccumulation in Asian walking catfish (Clarias batrachus)
Abstract
The present investigation was conducted to determine the optimal dietary Cu-NPs requirement of Asian walking catfish, Clarias batrachus (7.46 ± 0.15 cm; 5.28 ± 0.10 g) by feeding with diets supplemented with different concentrations of Cu-NPs (10, 20, 30, 40 and 50 mg/kg) and control group. Each experimental diet was hand-fed to triplicate groups of fish for 60 days in glass aquarium. Results showed that fish group fed with 20 mg/kg Cu-NPs in feed exhibited highest (P < 0.05) growth performance and feed utilization compared to the control group. However, increased level of Cu-NPs from 30 to 50 mg/kg in feed significantly reduced the growth performance. Significantly higher protein and lipid were also recorded at 20 mg/kg Cu-NPs supplemented group. Haematological parameters, serum lipid and enzymatic profile were found to influence significantly with the addition of Cu-NPs in feed compared to the control group. Based on the polynomial regression analysis between FW, WG and SGRW against dietary Cu-NPs levels, the optimal dietary supplementation of Cu-NPs for C. batrachus were estimated to be ranged between 19.98 to 20.05 mg/kg per diet, respectively. Bioaccumulation of Cu was the highest in liver compared to muscle and serum, whereas the highest Cu accumulation was observed at 50 mg/kg Cu-NPs supplemented group. The findings of the present study will be helpful for formulating nutrient rich low cost catfish feed.
Keywords:
Copper nanoparticles, Bioaccumulation, Feed formulation, Fish growth, PhysiologyDownloads
References
Abdel-Hameid, N.-A., H., Zehra, S., & Khan, M. A. (2016). Dietary copper requirement of fingerling Channa punctatus (Bloch) based on growth, feed conversion, blood parameters and whole body copper concentration. Aquaculture Research, 48(6), 2787-2797, https://doi.org/10.1111/are.13112
Akter, N., Alam, M. J., Jewel, M. A., Ayenuddin, M., Haque, S. K., & Akter, S. (2018) Evaluation of dietary metallic iron nanoparticles as feed additive for growth and physiology of Bagridae catfsh Clarias batrachus (Linnaeus, 1758). International Journal of Fisheries and Aquatic Studies, 6(3), 371–377
Alam, M.J., Sultana, F., & Iqbal, M.T. (2015). Potential of iron nanoparticles to increase germination and growth of wheat seedling. Journal of Nanoscience Advance Technology, 1(3), 14-20.
Albrecht, M. A., Evans, C. W., Raston, & C. L. (2006). Green chemistry and the health implications of nanoparticles. Green Chemistry. 8, 417-432.
Alishahi, A., Mirvaghefi, A., Tehrani, M. R., F Farahmand, A., Shojaosadati, S. A., & Dorkoosh, F. A. (2011). Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chemistry, 126, 935-940.
AOAC (2016). Official Methods of Analyses, 20th edn. Association of Official Analytical Chemist, Washington, DC., USA
Apines-Amar, M. J., Satoh, S., Caipang, C. M., Kiron, V., Watanabe, T., & Aoki, T. (2004). Amino acid-chelate: A better source of Zn, Mn and CU for rainbow trout, Oncorhynchus mykiss. Aquaculture, 240(1-4), 345-358, https://doi.org/10.1016/j.aquaculture.2004.01.032
Barcellos, L. J. G., Kreutz, L. C., de Souza, C., Rodrigues, L. B., Fioreze, I., Quevedo, & R. M., et al. (2004). Hematological changes in jundia´ (Rhamdia quelen Quoy and Gaimard Pimelodidae) after acute and chronic stress caused by usual aquacultural management, with emphasis on immunosuppressive effects. Aquaculture, 237, 229-236.
Behera, T., Swain, P., Rangacharulu, P. V., & Samanta, M. (2014). Nano-Fe as feed additive improves the hematological and immunological parameters of fish, Labeo rohita H. Applied Nanoscience, 4, 687-694.
Bellmann, S., Carlander, D., Fasano, A., Momcilovic, D., Scimeca, J. A., Waldman, W. J., Gombau, L., Tsytsikova, L., Canady, R., Pereira, D. I., & Lefebvre, D. E. (2015). Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7(5), 609-622, https://doi.org/10.1002/wnan.1333
Berntssen, M. H., Hylland, K., Wendelaar Bonga, S. E., & Maage, A. (2000). Toxic levels of dietary copper in Atlantic salmon (Salmo salar L.) Parr. Aquatic Toxicology, 46(2), 87-99, https://doi.org/10.1016/s0166-445x(98)00117-9
Bhuyain, M. A. B., Hossain, M. I., Haque, M. A., Jewel, M. A. S., Hasan, J., & Akter, S. (2019). Determination of the proximate composition of available fish feed ingredients in Bangladesh. Asian Journal of Agricultural Research, 13, 13-19.
Bolivar, R. B., Jimenez, E. B. T. & Christopher, L. B. (2006). Alternate-day feeding strategy for Nile Tilapia grow out in the Philippines: Marginal Cost–Revenue Analyses. North American Journal of Aquaculture, 68, 192–197.
Bull, B. S., Koepke, J. A., Simson, E., & van Assendelft, O. W. (2000). Procedure for determining packed cell volume by microhematocrit method; approved standard, third edition. Clinical and laboratory standards institute. Document, NCCLS 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087- 1898, USA. 20(18), 1-7.
Cerone, S. I., Sansinanea, A. S., Streitenberger, S. A., Garcia, M. C., Auza, N. J. (2000). Cytochrome c oxidase, Cu, Zn-superoxide dismutase, and ceruloplasmin activities in copper-deficient bovines. Biological Trace Element Research, 73(3): 269-78, https://doi.org/10.1385/BTER:73:3:269
Chatzifotis, S., Panagiotidou, M., Papaioannou, N., Pavlidis, M. Mengas, I., & Mylonas, C. C. (2010). Effect of deitary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (Argyrosomus regius) juveniles. Aquaculture, 307, 65-70.
Cicik, B. (2003). Bakır-çinko etkileşiminin sazan (Cyprinus carpio) in karaciğer, solungaç ve kas dokularındaki metal birikimi üzerine etkileri. Ekoloji, 12(48), 32-36.
Dacie, J. V. & Lewis, S. M. (1999). Practical Hematology, 6th ed.; Churchill Livingstone: London, UK.
Domínguez, D., Sarmiento, P., Sehnine, Z., Castro, P., Robaina, L., Fontanillas, R., Prabhu, P.A.J., & Izquierdo, M. (2019). Effects of copper levels in diets high in plant ingredients on gilthead sea bream (Sparus aurata) fingerlings. Aquaculture, 507, 466–474, https://doi.org/10.1016/j.aquaculture.2019.04.044
Drabkin, D. R. (1945). Crystallographic and optical properties of human hemoglobin: a proposal for the standardization of hemoglobin. American Journal of Medical Science, 209, 268-270.
Dube, A., Nicolazzo, J. A., & Larson, I., 2010. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+) catechin and (-) -epigallocatechin gallate. European Journal of Pharmaceutical Sciences, 41, 219-225.
Eide, D. J. (2006). Zinc transporters and the cellular trafficking of zinc. Biochimica et Biophysica Acta. 1763, 711-722.
Eisler, R. (2000). Handbook of Chemical Risk Assessment: Health Hazards to Humans, Plants, and Animals, Three Volume Set; CRC press: Boca Raton, FL, USA, 1.
El Basuini, M. F., El-Hais, A. M., Dawood, M. A., Abou-Zeid, A. E., EL-Damrawy, S. Z., Khalafalla, M. M., Koshio, S., Ishikawa, M., & Dossou, S. (2016). Effect of different levels of dietary copper nanoparticles and copper sulfate on growth performance, blood biochemical profiles, antioxidant status and immune response of Red Sea bream (Pagrus major). Aquaculture, 455, 32-40, https://doi.org/10.1016/j.aquaculture.2016.01.007
EL-Erian, M. A., Ibrahim, M. S., Salem, S. M. R., Mohammady, E. Y., El-Haroun, E. R., & Hassaan, M. S. (2023). Evaluation of diferent copper sources in Nile tilapia diets: Growth, body indices, hematological assay, plasma metabolites, immune, anti oxidative ability, and intestinal morphometric measurements. Biological Trace Element Research, 201, 4900–4911, https://doi.org/10.1007/s12011-023-03570-x.
Faiz, H., Zuberi, A., Nazir, S., Rauf, M., & Younus, N. (2015). Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: Comparative effects on growth and hematological indices of juvenile Grass Carp (Ctenopharyngodon idella). International Journal of Agriculture and Biology, 17, 568-574.
FAO. (2009). The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome. 200pp.
Faramarzi, M. (2012). Effect of dietary vitamin C on growth and feeding parameters, carcass composition and survival rate of Common Carp (Cyprinus carpio). Global Veterinaria, 8, 507-510.
Gandotra, R., Kumari, R., & Parihar, D. S. (2015). Impact of varied dietary protein on the growth performance of the juveniles of Labeo rohita. Journal of Environmental Biology, 2(3), 652-655.
Hossain, M. A., Haque, M. A., Mondol, M. M. R., Harun-Ur-Rashid, M., & Das, S. K. (2022). Determination of suitable stocking density for good aquaculture practice-based carp fattening in ponds under drought-prone areas of Bangladesh. Aquaculture, 547:737485.
Hossain, M. A., Hossain, M. A., Haque, M. A., Harun-Ur-Rashid, M. & Rahman, M. M. (2021). Optimization of dietary protein level for good aquaculture practice based carp fattening in ponds under drought prone area of Bangladesh. Archives of Agriculture and Environmental Science, 6(1), 26-34.
Ibrahim, M. S., El-gendy, G. M., Ahmed, A. I., Elharoun, E. R., & Hassaan, M. S. (2021) Nanoselenium versus bulk selenium as a dietary supplement: effects on growth, feed efficiency, intestinal histology, haemato-biochemical and oxidative stress biomarkers in Nile tilapia (Oreochromis niloticus Linnaeus, 1758) fingerlings. Aquaculture Research, 52(11), 5642–5655.
Jewel, M. A. S., Haque, M. A., Pervin, M. E., Akter, S., Ali, S. M. W., Noor, N. M., & Das, S. K. (2023). Regulatory mechanisms of nutrient metabolism and the impacts of iron and zinc nanoparticles on growth and physiology of Rohu, Labeo rohita. Animal Feed Science and Technology, 304, 115759. https://doi.org/10.1016/j.anifeedsci.2023.115759
Jewel, M. A. S., Husain, M. I., Haque, M. A., Sarker, M. A. A., Khatun, S., Begum, M., Ferdoushi, Z., & Akter, S. (2018). Development of low cost formulated quality feed for growth performance and economics of Labeo rohita cultured in cage. AACL Bioflux, 11(5), 1486-1494.
Jewel, M. A. S., Husain, M. I., Haque, M. A., Sarker, M. A. A., Khatun, S., Nesa, A., Paul, A. K., & Islam, M. S. (2020). A semi intensive approach on growth and profit margin of Indian major carps (Catla catla, Labeo rohita and Cirrhinus cirrhosus) with cost effective standard feed formulation. AACL Bioflux, 13(1), 183-193.
Kamunde, C., Clayton, C., & Wood, C. M. (2002). Waterborne vs. dietary copper uptake in rainbow trout and the effects of previous waterborne copper exposure. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(1), R69-R78. https://doi.org/10.1152/ajpregu.00016
Kavitha, C., Malarvizhi, A., Kumaran, S.S. & Ramesh, M. (2010). Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian Major Carp, Catla catla. Food and Chemical Toxicology, 48, 2848-2854.
Kim, S.G., & Kang, J.C. (2004). Effect of dietary copper exposure on accumulation, growth and hematological parameters of the juvenile rockfish, Sebastes schlegeli. Marine Environmental Research, 58, 65-82.
Levesque, H. M., Moon, T. W., Campbell, P. G. C., & Hontela, A. (2002). Seasonal variation in carbohydrate and lipid metabolism of yellow perch (Perca flavescens) chronically exposed to metals in the field. Aquatic Toxicology, 60, 257-267.
Liang, J. J., Yang, H. J., Liu, Y. J., Tian, L. X., & Liang, G. Y. (2012). Dietary zinc requirement of juvenile grass carp (Ctenopharyngodon idella) based on growth and mineralization. Aquaculture Nutrition, 18, 380-387.
Maret, W., & Krężel, A. (2007). Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. Molecular Medicine, 13, 371- 375.
Meng, F., Li, M., Tao, Z., Yuan, L., Song, M., Ren, Q., Xin, X., Meng, Q., & Wang, R. (2016). Effect of high dietary copper on growth, antioxidant and lipid metabolism enzymes of juvenile larger yellow croaker Larimichthys croceus. Aquaculture Reports, 3, 131–135.
Moazenzadeh, K., Islami, H. R., Zamini, A., & Soltani, M. (2018) Effects of dietary zinc level on performance, zinc status, tissue composition and enzyme activities of juvenile Siberian sturgeon, Acipenser baerii (Brandt 1869). Aquaculture Nutrition, 24, 1330–1339.
Mohseni, M., Pourkazemi, M., & Bai, S. (2014). Effects of dietary inorganic copper on growth performance and immune responses of juvenile beluga, Huso huso. Aquaculture Nutrition, 20(5), 547-556, https://doi.org/10.1111/anu.12107
Mondal, M., Das, T., Biswas, P., Samanta, C., & Bairagi, B. (2007). Influence of dietary inorganic and organic copper salt and level of soybean oil on plasma lipids, metabolites and mineral balance of broiler chickens. Animal Feed Science and Technology, 139(3-4), 212-233, https://doi.org/10.1016/j.anifeedsci.2007.01.014.
Murai, T., Andrews, J. W., & Smith, R. G. II. (1981). Effects of dietary copper on channel catfish. Aquaculture, 22, 353-357.
Muralisankar T., Bhavan, P. S., Radhakrishnan, S., Seenivasan, C., Manickam, N., & Srinivasan, V. (2014). Dietary supplementation of Zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn, Macrobrachium rosenbergii. Biological Trace Element Research, http//: doi: 10.1007/s12011-014-0026-4
Muralisankar, T., Bhavan, P. S., Radhakrishnan, S., Seenivasan, C., Srinivasan, V., & Santhanam, P. (2015). Effects of dietary zinc on the growth, digestive enzyme activities, muscle biochemical compositions, and antioxidant status of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture, 448, 98-104.
Muralisankar, T., Saravana Bhavan, P., Radhakrishnan, S., Seenivasan, C., & Srinivasan, V. (2016). The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae. Journal of Trace Elements in Medicine and Biology, 34, 39-49, https://doi.org/10.1016/j.jtemb.2015.12.003
Nel, A.E., Ma¨ dler, L., Velegol, D., Xia, T., Hoek, E.M., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano bio interface. Nature Materials, 8, 543-557.
Obirikorang, K. A., Amisah, S., Fialor, S. C., & Skov, P. V. (2015). Digestibility and postprandial ammonia excretion in Nile tilapia (Oreochromis niloticus) fed diets containing different. Aquaculture International, 23(5), 1249-1260.
Parida, S. P., Dutta, S. K., & Pal, A. (2011). Hematological and plasma biochemistry in Psammophilus blanfordanus (Sauria: Agamidae). Comparative Clinical Pathology, 21 (6), 1387–1394. https://doi.org/10.1007/S00580-011-1303-7
Ranzani-paiva, M. J. T., & Silva-Souza, A. (2004). Hematologia de peixes Brasileiros In: Ranzani-Paiva, M. J. T.; Takemoto, R. M.; Lizama, M. A. P. Sanidade de organismos aquáticos. São Paulo: Varela. 89-120.
Romani, R., Antognelli, C., Baldracchini, F., De Santis, A., Isani, G., Giovannini, E., & Rosi, G. (2003). Increased acetylcholinesterase activities in specimens of Sparus auratus exposed to sublethal copper concentrations. Chemico-Biological Interaction, 145, 321-329.
Sabatini, S. E., Juarez, A. B., Eppis, M. R., Bianchi, L., Luquet, C. M., & Rios de Molinaa, M. C. (2009). Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicology and Environmental Safety, 72, 1200-1206.
Saravanan, M., Kumar, P., & Ramesh, M. (2011). Haematological and biochemical responses of freshwater teleost fish Cyprinus carpio (Actinopterygii: Cypriniformes) during acute and chronic sublethal exposure to lindane Pestic. Biochemical Physiology, 100, 206-211.
Shahzad, K., Khan, M. N., Jabeen, F., Kosour, N., Sohail, M., Khan, M. K. A., & Ahmad, M. (2017) Bioaccumulation of manufactured titanium dioxide (TiO2), copper oxide (CuO) and zinc oxide (ZnO) nanoparticles in soft tissues of tilapia (Oreochromis mossambicus). Punjab University Journal of Zoology, 32, 237–243.
Tan, X.Y., Luo, Z., Liu, X., & Xie, C.X. (2011). Dietary copper (Cu) requirement for juvenile yellow catfish Pelteobagrus fulvidraco. Aquaculture Nutrition, 17, 170-176.
Tang, Q. Q., Feng, L., Jiang, W. D., Liu, Y., Jiang, J., Li, S. H., Kuang, S. Y., Tang, L., & Zhou, X. Q. (2013). Effects of dietary copper on growth, digestive, and brush border enzyme activities and antioxidant defense of Hepatopancreas and intestine for young grass carp (Ctenopharyngodon idella). Biological Trace Element Research, 155(3), 370-380.,https://doi.org/10.1007/s12011-013-9785-6.
Tunçsoy, M., Duran, S., Ay, Ö., Cicik, B., & Erdem, C. (2017). Effects of copper oxide nanoparticles on antioxidant enzyme activities and on tissue accumulation of Oreochromis niloticus. Bulletin of Environmental Contamination and Toxicology, 99, 360-364.
Wang, H., Zhu, H., Wang, X., Li, E., Du, Z., Qin, J., & Chen, L. (2018). Comparison of copper bioavailability in copper-methionine, nano-copper oxide and copper sulfate additives in the diet of Russian sturgeon Acipenser gueldenstaedtii. Aquaculture, 482, 146-154, https://doi.org/10.1016/j.aquaculture.2017.09.037.
Wang, T., Long, X., Cheng, Y., Liu, Z., & Yan, S. (2015). A comparison effect of copper nanoparticles versus copper sulphate on Juvenile Epinephelus coioides: Growth parameters, digestive enzymes, body composition, and histology as biomarkers. International Journal of Genomics, 1-10, https://doi.org/10.1155/2015/783021
Wang, W., Mai, K., Zhang, W., Ai, Q., Yao, C., Li, H., & Liufu, Z. (2009). Effects of dietary copper on survival, growth and immune response of juvenile abalone, Haliotis discus hannai Ino. Aquaculture, 297(1-4), 122-127, https://doi.org/10.1016/j.aquaculture.2009.09.006
Wu, R. S., Pollino, C. A., Au, D. W., Zheng, D. W., Yuen, B., & Lam, P. K., (2003). Evaluation of biomarkers of exposure and effect in juvenile areolated grouper (Epinephelus areolatus) on food-borne exposure to benzo-a-pyrene. Environmental Toxicology and Chemistry, 22, 68-73.
Yossa, R. & Verdegem, M. (2015). Misuse of multiple comparison tests and underuse of contrast procedures in aquaculture publications. Aquaculture, 437, 344–350.
Zafar, N., & Khan, M. A. (2019). Dietary copper requirement of fingerling Heteropneustes fossilis for formulating copper-balanced commercial feeds. Aquaculture Nutrition, 26(2), 248-260, https://doi.org/10.1111/anu.12986
Zaghloul, K. H., Omar, W. A. & Abo-Hegab, S. (2006). Toxicity specificity of copper in some freshwater fishes. Egyptian Journal of Zoology, 47, 383-400.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Agriculture and Environmental Science Academy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.