Effect of nutrient solution concentrations on the growth and yield of potato (Solanum tuberosum L.) varieties grown from apical rooted cutting in a hydroponic system

Winnie Chebet Wambugu 1 , Arnold M. Opiyo 2 , Anthony M. Kibe 3

1   Department of Crops, Horticulture and Soils, Faculty of Agriculture, Egerton University, P. O. Box 536-20115, Egerton, KENYA
2   Department of Crops, Horticulture and Soils, Faculty of Agriculture, Egerton University, P. O. Box 536-20115, Egerton, KENYA
3   Department of Crops, Horticulture and Soils, Faculty of Agriculture, Egerton University, P. O. Box 536-20115, Egerton, KENYA

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2023.080308

doi

Abstract

This study evaluated the effects of nutrient stock solution concentrations on the growth and yield of potato varieties grown from apical rooted cuttings (ARCs). A greenhouse experiment was conducted at the Climate and Water Smart Agriculture Center at Egerton University, Kenya. The experiment was laid out in a split-plot arrangement in randomized complete block design, where the main plot comprised three nutrient concentrations, i.e., 75% (N75), 100% (N100) and 125% (N125) of the ADC-Molo’ nutrient formulation. The subplots were allocated to four potato varieties (Shangi, Wanjiku, Nyota and Unica). The results showed that there were no significant (p<0.05) interaction effects of the nutrient stock solution concentrations application rates on the growth attributes of ARCs. The main effects of N125 gave the tallest plants (32.29cm) at 60 days after planting (DAP), highest normalised difference vegetation index (NDVI) (0.60) at 75 DAP, plant survival rate (82.15%) at 75 DAP, and fresh weight (79.04g) and dry matter (31.26%) of aboveground biomass (AGB). Nyota variety produced taller plants (26.90cm) at 60 DAP, gave higher NDVI values (0.53) at 75 DAP, and higher fresh weight (64.87g) and dry matter (27.60%) of the AGB. Significant (p<0.05) interactions were observed in the yield parameters. The interaction between N125 and Nyota (11.33) and Wanjiku (10.67) gave the highest number of minitubers, the highest yields were obtained between the interaction of N125 and Unica (16.38t/ha). Therefore, to achieve high growth and yields of ARCs under hydroponic system, seed potato producers should use 125% of the ADC Molo nutrient formulation.

Keywords:

Hydroponic, Minitubers, Nutrition, Varieties

Downloads

Download data is not yet available.

References

Aarakit, P., Ouma, J. P., & Lelei, J. J. (2021). Growth, yield and phosphorus use efficiency of potato varieties propagated from apical rooted cuttings under variable phosphorus rates. African Journal of Plant Science, 15(7), 173–184, https://doi.org/10.5897/AJPS2020.2113

Agle, W. M., & Woodbury, G. W. (1968). Specific gravity—dry matter relationship and reducing sugar changes affected by potato variety, production area and storage. American Potato Journal, 45(4), 119–131, https://doi.org/10.1007/BF02863065

Akoto, E. M., Othieno, C. O., & Ochuodho, J. O. (2020). Influence of phosphorus fertilizer on potato seed production in acid soils in Kenya. Sustainable Agriculture Research, 9(2), 101-117, https://doi.org/10.5539/sar.v9n2p101

Awati, R., Bhattacharya, A., & Char, B. (2019). Rapid multiplication technique for production of high-quality seed potato (Solanum tuberosum L.) tubers. Journal of Applied Biology & Biotechnology, 7(1), 1–5, https://doi.org/10.7324/JABB.2019.70101

Bekele, D., Abera, G., & Gobena, A. (2020). Effects of chemical fertilizer types and rates on tuber yield and quality of potato (Solanum tuberosum L.) at Assosa, Western Ethiopia. African Journal of Plant Science, 14(4), 155–164, https://doi.org/10.5897/AJPS2019.1930

Chatzistathis, T., & Therios, I. (2013). How soil nutrient availability influences plant biomass and how biomass stimulation alleviates heavy metal toxicity in soils: The cases of nutrient use efficient genotypes and phytoremediators, respectively. In M. D. Matovic (Ed.), Biomass Now. IntechOpen. https://doi.org/10.5772/53594

Chebet, W., & Opiyo, A. (2021). Status of potato bacterial wilt and its management options in Kenya. The Seventh RUFORUM Triennial Conference, 19(19), 7–13. http://repository.ruforum.org

Chiota, W. M., Mabiza, P., Chaibva, P., & Gama, T. (2015). Evaluating the effects of non-soil media on emergence and growth of potato (Solunum tuberosum L.). International Journal of Biosciences, 6655, 24–30.

Corrêa, R. M., Eduardo, J., Valdemar, B. P., Augusto, C., & Érika, B.P. (2010). The production of seed potatoes by hydroponic methods in Brazil. Fruit, Vegetable and Cereal Science and Biotechnology.

Craine, J. M., & Dybzinski, R. (2013). Mechanisms of plant competition for nutrients, water and light. British Ecology Society, 27, 833–840, https://doi.org/10.1111/1365-2435.12081

El-Hadidi, E., Ewais, M., & Shehata, A. (2017). Fertilization effects on potato yield and quality. Journal of Soil Sciences and Agricultural Engineering, 8(12), 769–778, https://doi.org/10.21608/jssae.2017.38254

FAO. (2018). FAO Publications Catalogue. In Food and Agriculture Organization of United Nations.

Farias, G. D., Bremm, C., Bredemeier, C., Menezes, J. D. L., Alves, L. A., Tiecher, T., Martins, A. P., Fioravanço, G. P., Petry, G., César, P., & Carvalho, D. F. (2023). Normalized Difference Vegetation Index (NDVI) for soybean biomass and nutrient uptake estimation in response to production systems and fertilization strategies. Frontiers in Sustaineble Food Systems, 6, 959681. https://doi.org/10.3389/fsufs.2022.959681

Gbollie, S. N., Mwonga, S. M., Kibe, A. M., & Zolue, G. M. (2022). Effects of calcium nitrate levels and soaking durations in cocopeat on the growth and yield of potato (Solanum tuberosum L.) apical rooted cuttings. Achieves of Agriculture and Environmental Science, 7(3), 339–346.

Gikundi, E. N., Sila, D. N., Orina, I. N., & Buzera, A. K. (2021). Physico-chemical properties of selected irish potato varieties grown in Kenya. African Journal of Food Science, 15(1), 10–19, https://doi.org/10.5897/AJFS2020.2025

Gómez, M. I., Barragán, A., Magnitskiy, S., & Rodríguez, L. E. (2019). Normalized difference vegetation index, N- NO-3 and K+ in stem sap of potato plants (Group Andigenum) as affected by fertilization. Experimental Agriculture, 55(6), 945–955, https://doi.org/10.1017/S001447971900005X

Harahagazwe, D., Andrade-piedra, J., & Schulte-geldermann, E. (2018). Current situation of rapid multiplication techniques for early generation seed potato production in Sub- Saharan Africa. https://doi.org/10.4160/23096586RTBWP20181

Hussain, T. (2016). Potatoes: Ensuring food for the future. Advances in Plant and Agriculture Research, 3(6), 178–182, https://doi.org/10.15406/apar.2016.03.00117

Iraboneye, N., Mungai, N. W., & Charimbu, M. K. (2020). Effects of compound fertilizer and canola green manure on nutrient use efficiency , growth and yield of potato tuber (Solanum tuberosum L.) in Nakuru, Kenya. Plant Nutrition, 5(4), 537–554, https://doi.org/10.5455/faa.110466

Jaetzold, R., & Schmidt, H. (2009). Subpart B1a Southern Rift Valley Province: Nakuru County. In Farm Management Handbook of Kenya: Vol. II (second). Ministry of Agriculture. http://star-www.giz.de/fetch/88XF00ksg0001Q7gj/gtz2010-3411en-farm-management-atlas-nakuru.pdf

Kaguongo, W., Maingi, G., Barker, I., Nganga, N., & Guenthner, J. (2013). The value of seed potatoes from four systems in Kenya. American Journal of Potato Research, 91(1), 109–118, https://doi.org/10.1007/s12230-013-9342-z

Kenya Plant Health Inspectorate Service, KEPHIS. (2016). Seed potato production and certification guidelines.

Kenya Investment Authority, KIA. (2020). Potato Sector Investment Profile Summary.

Koch, M., Naumann, M., Thiel, H., Gransee, A., & Pawelzik, E. (2020). The importance of nutrient management for potato production part I: Plant nutrition and tuber quality. Potato Research, 63(1), 121–137, https://doi.org/10.1007/s11540-019-09430-3

Lee, J. Y., Rahman, A., Azam, H., Kim, H. S., & Kwon, M. J. (2017). Characterizing nutrient uptake kinetics for efficient crop production during Solanum lycopersicum var. Cerasiforme Alef. growth in a closed indoor hydroponic system. PLoS ONE, 12(5), 1–21, https://doi.org/10.1371/journal.pone.0177041

Lee, W.C., Zotarelli, L., Rowland, D. L., & Liu, G. (2021). Evaluation of potato varieties grown in hydroponics for phosphorus use efficiency. Agriculture, 11(7), 668. https://doi.org/10.3390/agriculture11070668

Lemma, T., Chindi, A., Wgiorgis, G., Solomon, A., Shunka, E., & Seid, E. (2018). Accelerating seed potato production by using rapid multiplication systems in Ethiopia. Open Science Journal, 3(1), 1–9, https://doi.org/10.23954/osj.v3i1.753

Maboko, M. M., Phillipus, C., Plooy, D., & Chiloane, S. (2017). Yield and mineral content of hydroponically grown mini-cucumber (Cucumis sativus L.) as affected by reduced nutrient concentration and foliar fertilizer application. American Society for Horticultural Sciences, 12(52), 1728–1733, https://doi.org/10.21273/HORTSCI12496-17

Misgina, N. A. (2016). Effect of phosphorus and potassium fertilizer rates on yield and yield component of potato (Solanum tubersum L.) at K/Awlaelo, Tigray, Ethiopia. Food Science and Quality Management, 48, 10. www.iiste.org

Minstry of Agriculture, Livestock and Fisheries. (2016). The National potato strategy 2016-2020.

Mutinda, R. M., Gathungu, E. W., Kibe, A., & Wambua, D. (2020). Factors influencing agripreneur’s investment decision and level in clean seed potato entreprises in the highlands of Kenya. African Crop Science Journal, 28(1), 165–174.

National Potato Council of Kenya. (2019). Potato variety catalogue 2019. http://varieties.potato.org.uk/varieties/view/Accord

Ong’ayo, M. J., Gido, E. O., Ayuya, O. I., Mwangi, M., & Kibe, A. M. (2020). Role of networking capability, socio-economic and institutional characteristics of adoption tendencies of clean seed potato agri-enterproses in central Rift valley, Kenya. African Crop Science Journal, 28(1), 131–144.

Parker, M. L. (2017). Performance of apical cuttings to fast-track production of early generation seed potato Preliminary report Background to potato seed systems in Sub-Saharan Africa.

Petropoulos, S. A., Fernandes, Â., Polyzos, N., Antoniadis, V., Barros, L., & Ferreira, I. C. F. R. (2020). The impact of fertilization regime on the crop performance and chemical composition of potato. Agronomy, 10(474), 1–18, https://doi.org/10.3390/agronomy10040474

Putra, F., Mada, U. G., Saparso, S., Soedirman, U. J., Faozi, K., & Soedirman, U. J. (2019). Relationship of growth and yield minitubers of potato under cocopeat media and frequency of fertilizer. Agriculture Research Journal, 15(1), 11–19.

Sakamoto, M., & Takahiro, S. (2020). Effect of Nutrient solution concentration on the growth of hydroponic sweetpotato. Agronomy, 10, 1708. https://doi.org/doi:10.3390/agronomy10111708

Tessema, L., & Dagne, Z. (2018). Aeroponics and sand hydroponics: Alternative technologies for pre-basic seed potato production in Ethiopia soilless pre-basic seed potato. Open Agriculture, 3, 444–450. https://doi.org/https://doi.org/10.1515/opag-2018-0049

Tsoka, O., Demo, P., Nyende, A. B., & Ngamau, K. (2012). Potato seed tuber production from in vitro and apical stem cutting under aeroponic system. African Journal of Biotechnology, 11(63), 12612–12618, https://doi.org/10.5897/ajb10.1048

Tufik, C. B. A., Fontes, P. C. R., Milagres, C. do C., & Moreira, M. A. (2019). Productivity of potato seed submitted to different doses of potassium in hydroponic system. Emirates Journal of Food and Agriculture, 31(7), 555–560, https://doi.org/10.9755/ejfa.2019.v31.i7.1979

USEPA. (2018). Part 158 nontarget plant protection data requirements: Guidance for calculating percent survival in seedling emergence studies. In United States Environmental Protection Agency.

VanderZaag, P., Xuan Pham, T., Escobar Demonteverde, V., Kiswa, C., Parker, M., Nyawade, S., Wauters, P., & Barekye, A. (2021). Apical rooted cuttings revolutionize seed potato production by smallholder farmers in the tropics. In M. Yildiz & Y. Ozgen (Eds.), Solanum tuberosum-A Promising Crop for Starvation Problem (pp. 1–19), https://doi.org/10.5772/intechopen.98729

Waaswa, A., Oywaya Nkurumwa, A., Mwangi Kibe, A., & Ngeno Kipkemoi, J. (2021). Climate-Smart agriculture and potato production in Kenya: Review of the determinants of practice. Climate and Development, 0(0), 1–16, https://doi.org/10.1080/17565529.2021.1885336

Wambugu, W., Opiyo, O., & Githeng’u, S. (2022). Rapid multiplication techniques in seed potato production in Kenya: Prospects, opportunities and challenges. Egerton University 14th Biennial International Conference, 1–12. https://conferences.egerton.ac.ke/index.php/euc/article/view/90

Zaeen, A. A., Sharma, L., Jasim, A., Bali, S., Buzza, A., & Alyokhin, A. (2020). In-season potato yield prediction with active optical sensors. Agrosystems, Geosciences and Environment, 3(1), 1–15, https://doi.org/10.1002/agg2.20024

Zimba, C. S., Njoloma, P. J., Nyaika, A. J., Mwase, F. W., Maliro, F. M., Bokosi, M. J., & Moses, K. B. (2014). Minituber production potential of selected potato (Solanum tuberosum L.) genotypes in different propagation media. African Journal of Biotechnology, 13(48), 4430–4437, https://doi.org/10.5897/A

Published

2023-09-25

How to Cite

Wambugu, W. C., Opiyo, A. M., & Kibe, A. M. (2023). Effect of nutrient solution concentrations on the growth and yield of potato (Solanum tuberosum L.) varieties grown from apical rooted cutting in a hydroponic system. Archives of Agriculture and Environmental Science, 8(3), 325-332. https://doi.org/10.26832/24566632.2023.080308

Issue

Section

Research Articles