Morpho-physiological response of maize (Zea mays L.) genotypes under aluminium stress at early seedling stage

Md. Asaduzzaman 1 , Md. Shabab Zahedi 2 , Md. Liton Mia 3 , Ibrahim Hossain Shakil 4 , Md. Shafiqul Islam 5 , A. K.M. Zakir Hossain 6 , Muhammad Humayun Kabir 7

1   Department of Seed Science and Technology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh - 2202, BANGLADESH
2   Faculty of Agricultural Engineering and Technology, Bangladesh Agricultural University, Mymensingh - 2202, BANGLADESH
3   Department of Agronomy, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh - 2202, BANGLADESH
4   Department of Agronomy, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh - 2202, BANGLADESH
5   Department of Agronomy, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh - 2202, BANGLADESH
6   Department of Crop Botany, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh - 2202, BANGLADESH
7   Department of Crop Botany, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh - 2202, BANGLADESH

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2023.0804023

doi

Abstract

This study investigated the morpho-physiological responses of five maize (Zea mays L.) genotypes to aluminum stress during the early seedling stage. The experiment, conducted at the Plant Physiology Laboratory in the Department of Crop Botany at Bangladesh Agricultural University, Mymensingh, followed a two-factor completely randomized design with aluminum concentrations (0 μM as control, 100 μM, and 200 μM) and five maize varieties (Konok, Kaveri-50, BWMRI-1, BHM-14, and BHM-16). Variety Konok exhibited superior overall performance across experimental parameters, while aluminum stress at 200 μM consistently decreased seed germination and seedling growth compared to the control at all recording stages. Variety Konok without aluminum stress demonstrated the highest values for root length (28.23 cm), shoot fresh weight (4.35 g), shoot dry weight (0.53 g), root fresh weight (8.18 g), root dry weight (1.21 g), total fresh weight (12.56 g), total dry weight (1.74 g), vigor index (5106.7). Conversely, under aluminum stress (200 μM AlCl3), the lowest values were observed in root length (14.70 cm), shoot length (15.38 cm), seedling length (31.50 cm), shoot fresh weight (1.79 g), shoot dry weight (0.20 g), root fresh weight (1.96 g), root dry weight (0.47 g), total fresh weight (3.84 g), total dry weight (0.67 g), vigor index (2592.7), and various stress tolerance indices. In summary, the study suggests that the maize variety "Konok" exhibits greater enhancement during the early seedling stage when grown without exposure to aluminum stress, emphasizing its potential for improved performance under normal conditions.

Keywords:

Aluminium stress, Early seedling stage, Genotypes, Maize

Downloads

Download data is not yet available.

References

Adnan, A. A., Diels, J., Jibrin, J. M., Kamara, A. Y., Shaibu, A. S., Craufurd, P., & Menkir, A. (2020). CERES-Maize model for simulating genotype-by-environment interaction of maize and its stability in the dry and wet savannas of Nigeria. Field crops research, 253, 107826. https://doi.org/10.1016/j.fcr.2020.107826

Adnan, K. M., Sarker, S. A., Tama, R. A. Z., & Pooja, P. (2021). Profit efficiency and influencing factors for the inefficiency of maize production in Bangladesh. Journal of Agriculture and Food Research, 5, 100161. https://doi.org/10.1016/j.jafr.2021.100161

Akbar, M. A., Siddique, M. A., Marma, M. S., Rahman, M. M., Molla, M. R. I., Rahman, M. M., & Hamid, A. (2016). Planting arrangement, population density and fertilizer application rate for white maize (Zea mays L.) production in Bandarban valley. Agriculture, Forestry and Fisheries, 5(6), 215-224, http://10.11648/j.aff.20160506.12

Arora, P., Dixit, S., Singh, G., & Pandey, S. (2017). Aluminium Toxicity in Maize Crop. South African Journal Science, 85, 9-12, http://10.19080/CTBEB.2017.09.555763

Batista, M. F., Moscheta, I. S., Bonato, C. M., Batista, M. A., Almeida, O. J. G. D., & Inoue, T. T. (2013). Aluminum in corn plants: influence on growth and morpho-anatomy of root and leaf. Revista Brasileira de Ciência do Solo, 37, 177-187, https://doi.org/10.1590/S0100-06832013000100018

BBS (Bangladesh Bureau of Statistics). (2021). Annual Agricultural Statistics 2020–21. Bangladesh Bureau of Statistics, Statistic Division, Ministry of Planning, Government people’s Republic of Bangladesh, Dhaka, pp. 37.

Beedi, S., Macha, S. I., Gowda, B., Savitha, A. S., & Kurnallikar, V. (2018). Effect of seed priming on germination percentage, shoot length, root length, seedling vigour index, moisture content and electrical conductivity in storage of kabuli chickpea cv., MNK –1 (Cicer arietinum L.). Journal of Pharmacognosy and Phytochemistry, 7(1), 2005-2010.

Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I., & Martínez-Estévez, M. (2017). Aluminum, a friend or foe of higher plants in acid soils. Frontiers in plant science, 8, 1767. https://doi.org/10.3389/fpls.2017.01767

Chen, Y., Palta, J., Prasad, P. V., & Siddique, K. H. (2020). Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC plant biology, 20, 1-16, https://doi.org/10.1186/s12870-020-02390-8

Coelho, C. D. J., Bombardelli, R. G. H., Schulze, G. S., Caires, E. F., & Matiello, R. R. (2019). Genetic control of aluminum tolerance in tropical maize germplasm. Bragantia, 78, 71-81, https://doi.org/10.1590/1678-4499.2017396

Cunha, G. O. D. M., Almeida, J. A. D., Ernani, P. R., Pereira, É. R., Skoronski, É., Lourenço, L. S., & Brunetto, G. (2018). Chemical species and aluminum concentration in the solution of acid soils cultivated with soybean and corn under liming. Revista Brasileira de Ciência do Solo, 42. https://doi.org/10.1590/18069657rbcs20170406

Custodio, T., T. Daniel Houle, & F. Girard. (2023). Impact of Environmental Conditions on Seed Germination of Glossy Buckthorn (Frangula alnus (Mill)) in Eastern Canada. Forests, 14(10), 1999. https://doi.org/10.3390/f14101999

Dass, A., Chandra, S., Choudhary, A. K., Singh, G., & Sudhishri, S. (2016). Influence of field re-ponding pattern and plant spacing on rice root–shoot characteristics, yield, and water productivity of two modern cultivars under SRI management in Indian Mollisols. Paddy and water environment, 14, 45-59, https://doi.org/10.1007/s10333-015-0477-z

Gomez, K. A. & Gomez, A. A. (1984). Statistical Procedure for Agricultural Research. 2nd edition. John Willy and Sons, Newyork. pp. 28–192.

Khan, M. N., Zhang, J., Luo, T., Liu, J., Ni, F., Rizwan, M., & Hu, L. (2019). Morpho-physiological and biochemical responses of tolerant and sensitive rapeseed cultivars to drought stress during early seedling growth stage. Acta Physiologiae Plantarum, 41, 1-13, https://doi.org/10.1007/s11738-019-2812-2

Kvande H. 2015. Occurrence and production of aluminum. Encyclopedia of Inorganic and Bioinorganic Chemistry, Norwegian University of Science and Technology, Trondheim, Norway.

Ndeke, V., & Tembo, L. (2019). Investigating the type of gene action conditioning tolerance to aluminum (Al) toxicity in tropical maize. Asian Plant Research Journal, 2(4), 1-8.

Pavlů, L., Borůvka, L., Drábek, O., & Nikodem, A. (2021). Effect of natural and anthropogenic acidification on aluminium distribution in forest soils of two regions in the Czech Republic. Journal of Forestry Research, 32, 363-370, https://doi.org/10.1007/s11676-019-01061-1

Pidjath, C., Sopandie, D., Turjaman, M., & Budi, S. W. (2021). Morpho-physiological changes of four tropical tree seedlings under aluminum stress. Biodiversitas Journal of Biological Diversity, 22(3). https://doi.org/10.13057/biodiv/d220317

Rahman, M. A., Lee, S. H., Ji, H. C., Kabir, A. H., Jones, C. S., & Lee, K. W. (2018). Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities. International journal of molecular sciences, 19(10), 3073. https://doi.org/10.3390/ijms19103073

Rivero, L., Scholl, R., Holomuzki, N., Crist, D., Grotewold, E., & Brkljacic, J. (2014). Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses. Arabidopsis protocols, 3-25. https://doi.org/10.1007/978-1-62703-580-4_1

Russell, D. F. (1986). MSTAT-C package programme. Crop and Soil Science Department, Michigan State University, USA, 59-60.

Sagar, A., Tajkia, J., Haque, M., Fakir, M., & Hossain, A. K. M. Z. (2018). Screening of sorghum genotypes for salt-tolerance based on seed germination and seedling stage. Fundamental and Applied Agriculture, 4(1), 735-743, https://doi.org/10.5455/faa.18483

Shovon, M. H., Sagar, A., Mia, M. A., Rakhi, F. R., Tajkia, J. E., Kabir, M. H., & Hossain, A. K. M. Z. (2022). Boron-mediated aluminium stress tolerance under aluminium toxicity at germination and early seedling stages of wheat. Progressive Agriculture, 32(2), 127-139, https://doi.org/10.3329/pa.v32i2.58397

Sun, C., Wang, D., Shen, X., Li, C., Liu, J., Lan, T., & Zhang, Y. (2020). Effects of biochar, compost and straw input on root exudation of maize (Zea mays L.): From function to morphology. Agriculture, Ecosystems & Environment, 297, 106952. https://doi.org/10.1016/j.agee.2020.106952

Tandzi, N. L., Ngonkeu, E. L. M., Youmbi, E., Nartey, E., Yeboah, M., Gracen, V., & Mafouasson, H. (2015). Agronomic performance of maze hybrids under acid and control soil conditions. International Journal of Agronomy and Agricultural Research, 6, 275-291.

Tanwir, K., Javed, M. T., Abbas, S., Shahid, M., Akram, M. S., Chaudhary, H. J., & Iqbal, M. (2021). Serratia sp. CP-13 alleviates Cd toxicity by morpho-physio-biochemical improvements, antioxidative potential and diminished Cd uptake in Zea mays L. cultivars differing in Cd tolerance. Ecotoxicology and Environmental Safety, 208, 111584. https://doi.org/10.1016/j.ecoenv.2020.111584

Tekeu, H., Ngonkeu, E. L. M., Tandzi, L. N., Djocgoue, P. F., Bell, J. M., Mafouasson, H. A., & Fokom, R. (2015). Evaluation of maize (Zea mays L.) accessions using line x tester analysis for aluminum and manganese tolerance. International Journal of Biological and Chemical Sciences, 9(4), 2161-2173, https://doi.org/10.4314/ijbcs.v9i4.36

Tembo, L. (2018). Effect in hydroponics of nitrogen and aluminium toxicity on tropical maize. Asian Research Journal of Agriculture, 9(2), 1-7, https://ssrn.com/abstract=3622139

Vasconcellos, R. C., Mendes, F. F., de Oliveira, A. C., Guimarães, L. J., Albuquerque, P. E., Pinto, M. O., & Guimaraes, C. T. (2021). ZmMATE1 improves grain yield and yield stability in maize cultivated on acid soil. Crop Science, 61(5), 3497-3506. https://doi.org/10.1002/csc2.20575

Wang, X., Feng, J., White, P. J., Shen, J., & Cheng, L. (2020). Heterogeneous phosphate supply influences maize lateral root proliferation by regulating auxin redistribution. Annals of Botany, 125(1), 119-130, https://doi.org/10.1093/aob/mcz154

Xu, L., Liu, W., Cui, B. M., Wang, N., Ding, J. Z., Liu, C., & Zhang, S. (2017). Aluminium tolerance assessment of 141 maize germplasms in a solution culture. Universal Journal of Agricultural Research, 5(1), 1-9.

Zishiri, R. M., Mutengwa, C. S., Tandzi, L. N., & Manyevere, A. (2022). Growth response and dry matter partitioning of quality protein maize (Zea mays L.) genotypes under aluminum toxicity. Agronomy, 12(6), 1262. https://doi.org/10.3390/agronomy12061262

Published

2023-12-25

How to Cite

Asaduzzaman, M., Zahedi, M. S. ., Mia, M. L., Shakil, I. H., Islam, M. S. ., Hossain, A. K. Z. ., & Kabir, M. H. (2023). Morpho-physiological response of maize (Zea mays L.) genotypes under aluminium stress at early seedling stage. Archives of Agriculture and Environmental Science, 8(4), 611-618. https://doi.org/10.26832/24566632.2023.0804023

Issue

Section

Research Articles

Similar Articles

You may also start an advanced similarity search for this article.