Effect of various biochar on selected soil properties and agronomical parameters of okra (Abelmoschus esculentus L.) at Rupandehi, Nepal
Abstract
Biochar is rich in carbon and obtained by carbonization of biomass heated at 300-1000°C under limited oxygen which improves the soil properties and yield of various crops. This study aimed to determine the changes in soil properties and agronomical characteristics of okra by biochar prepared from different feedstock. The research was conducted in randomized blocks and replicated thrice, with treatments; control, wood ash (WA), rice husk biochar (RHB), bamboo biochar (BB), Ashoka leaves biochar (ALB), coconut husk biochar (CHB), and sawdust biochar (SB), applied at 18 t/ha. Biochar-incorporated soil and the biochar were analyzed for pH, electrical conductivity, nitrogen, P2O5, K2O, and organic matter, and the soil for bulk density, particle density, and porosity. Agronomical parameters like plant height, fruit size, and yield were also recorded. The biochar incorporation modified the soil's chemical properties and significantly decreased bulk and particle density. The highest reduction of 10.9% in bulk density (1.22gm/cm3), and 4.4% in particle density (2.39gm/cm3) were observed in ALB and SB incorporated soil respectively. ALB (50%) followed by BB (49%) showed a significant increase in soil porosity compared to the control (45.18%). BB (15.7cm) significantly increased the fruit size compared to the control (14.06cm) followed by ALB (15.5cm). ALB (8.16t/ha) significantly increased the yield of okra relative to control (7.82t/ha). The findings suggest the use of ALB and BB to improve soil properties and yield in the long run.
Keywords:
Carbon sequestration, Organic amendments, Organic waste, Soil conditioner, Soil fertilityDownloads
References
Abbas, T., Rizwan, M., Ali, S., Zia-ur-Rehman, M., Farooq Qayyum, M., Abbas, F., Hannan, F., Rinklebe, J., & Sik Ok, Y. (2017). Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicology and Environmental Safety, 140, 37–47. https://doi.org/10.1016/J.ECOENV.2017.02.028
Acharya, N., Vista, S. P., Shrestha, S., Neupane, N., & Pandit, N. R. (2022). Potential of Biochar-Based Organic Fertilizers on Increasing Soil Fertility, Available Nutrients, and Okra Productivity in Slightly Acidic Sandy Loam Soil. Nitrogen 2023, Vol. 4, Pages 1-15, 4(1), 1–15. https://doi.org/10.3390/NITROGEN4010001
Al-Sayed, H. M., Ali, A. M., Mohamed, M. A., & Ibrahim, M. F. (2022). Combined Effect of Prickly Pear Waste Biochar and Azolla on Soil Fertility, Growth, and Yield of Roselle (Hibiscus sabdariffa L.) Plants. Journal of Soil Science and Plant Nutrition, 22(3), 3541–3552. https://doi.org/10.1007/S42729-022-00908-7.PDF
Al-Shawi, A. A. A., Hameed, M. F., Hussein, K. A., & Thawini, H. K. (2021). Review on the “Biological Applications of Okra Polysaccharides and Prospective
Research.” Future Journal of Pharmaceutical Sciences, 7(1). https://doi.org/10.1186/s43094-021-00244-0
Al-Wabel, M. I., Hussain, Q., Usman, A. R. A., Ahmad, M., Abduljabbar, A., Sallam, A. S., & Ok, Y. S. (2018). Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degradation and Development, 29(7), 2124–2161. https://doi.org/10.1002/LDR.2829
Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., Arif, M. S., Hafeez, F., Al-Wabel, M. I., & Shahzad, A. N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environmental Science and Pollution Research, 24(14), 12700–12712.
https://doi.org/10.1007/s11356-017-8904-x
Angelova, V. R., Akova, V. I., & Ivanov, K. I. (2019). Comparative study of the methods for the determination of organic carbon and organic matter in soils, compost and sludge. Bulgarian Chemical Communications, 51(3), 342–347. https://doi.org/10.34049/bcc.51.3.4957
Berek, A. K., Hue, N. V, Radovich, T. J. K., & Ahmad, A. A. (2018). Biochars Improve Nutrient Phyto-Availability of Hawai ’ i ’ s Highly Weathered Soils. 1–18.
https://doi.org/10.3390/agronomy8100203
Beusch, C. (2021). Biochar as a Soil Ameliorant: How Biochar Properties Benefit Soil Fertility—A Review. Journal of Geoscience and Environment Protection, 09(10), 28–46. https://doi.org/10.4236/gep.2021.910003
Blanco-Canqui, H. (2017). Biochar and Soil Physical Properties. Soil Science Society of America Journal, 81(4), 687–711. https://doi.org/10.2136/sssaj2017.01.0017
Bolan, N., Hoang, S. A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., Joseph, S., Jung, S., Kim, K. H., Kirkham, M. B., Kua, H. W., Kumar, M., Kwon, E. E., Ok, Y. S., Perera, V., Rinklebe, J., Shaheen, S. M., Sarkar, B., Sarmah, A. K., & Van Zwieten, L. (2022). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 67(2), 150–200. https://doi.org/10.1080/09506608.2021.1922047
Chang, Y., Rossi, L., Zotarelli, L., Gao, B., Shahid, M. A., & Sarkhosh, A. (2021). Biochar improves soil physical characteristics and strengthens root architecture in Muscadine grape (Vitis rotundifolia L.). Chemical and Biological Technologies in Agriculture, 8(1), 1–11. https://doi.org/10.1186/s40538-020-00204-5
Chen, Z., Kamchoom, V., Apriyono, A., Chen, R., & Chen, C. (2022). Laboratory study of water infiltration and evaporation in biochar-amended landfill covers under extreme climate. Waste Management (New York, N.Y.), 153, 323–334. https://doi.org/10.1016/J.WASMAN.2022.09.015
Cornelissen, G., Jubaedah, Nurida, N. L., Hale, S. E., Martinsen, V., Silvani, L., & Mulder, J. (2018). Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. The Science of the Total Environment, 634, 561–568. https://doi.org/10.1016/J.SCITOTENV.2018.03.380
Dahal, S., Vista, S. P., Khatri, M., & Pandit, N. R. (2021). Effect of biochar blended organic fertilizers on soil fertility, radish productivity and farm income in Nepal. Archives of Agriculture and Environmental Science, 6(4), 416–425. https://doi.org/10.26832/24566632.2021.060402
Dong, X., Li, G., Lin, Q., & Zhao, X. (2017). Quantity and quality changes of biochar aged for 5 years in soil under field conditions. Catena, 159, 136–143.
https://doi.org/10.1016/J.CATENA.2017.08.008
Doulgeris, C., Kypritidou, Z., Kinigopoulou, V., & Hatzigiannakis, E. (2023). Simulation of Potassium Availability in the Application of Biochar in Agricultural Soil. Agronomy, 13(3), 1–15. https://doi.org/10.3390/agronomy13030784
Ebrahimi, M., Souri, M. K., Mousavi, A., & Sahebani, N. (2021). Biochar and vermicompost improve growth and physiological traits of eggplant (Solanum melongena L.) under deficit irrigation. Chemical and Biological Technologies in Agriculture, 8(1). https://doi.org/10.1186/S40538-021-00216-9
Farias, D. B. dos S., Freitas, M. I. de, Lucas, A. A. T., & Gonzaga, M. I. S. (2020). Biochar and its impact on soil properties, growth and yield of okra plants. Colloquium Agrariae, 16(2), 29–39. https://doi.org/10.5747/ca.2020.v16.n2.a356
Gezahegn, S., Sain, M., & Thomas, S. C. (2019). Variation in Feedstock Wood Chemistry Strongly Influences Biochar Liming Potential. Soil Systems 2019, Vol. 3, Page 26, 3(2), 26. https://doi.org/10.3390/SOILSYSTEMS3020026
Glaser, B., & Lehr, V. I. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific Reports, 9(1), 1–9.
https://doi.org/10.1038/s41598-019-45693-z
Global Soil Laboratory Network. (2019). Standard operating procedure for soil organic carbon: Walkley-Black method. Food and Agriculture Organization of the United Nations, 27. https://www.fao.org/3/ca7471en/ca7471en.pdf
Guo, R., Qian, R., Yang, L., Khaliq, A., Han, F., Hussain, S., Zhang, P., Cai, T., Jia, Z., Chen, X., & Ren, X. (2022). Interactive Effects of Maize Straw-Derived Biochar and N Fertilization on Soil Bulk Density and Porosity, Maize Productivity and Nitrogen Use Efficiency in Arid Areas. Journal of Soil Science and Plant Nutrition, 22(4), 4566–4586. https://doi.org/10.1007/S42729-022-00881-1/METRICS
Gyanwali, P., Khanal, R., Pokharel, N. P., Tharu, B., Koirala, R., Paudel, S., & Paudel, R. (2023). Invitro analysis of antifungal effects of botanicals on Sclerotinia sclerotiorum causing white mold disease. Agriculture and Food Sciences Research, 10(2), 8–13. https://doi.org/10.20448/aesr.v10i2.5186
Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. In Biochar (Vol. 2, Issue 4). Springer Singapore. https://doi.org/10.1007/s42773-020-00065-z
Hu, T., Wei, J., Du, L., Chen, J., & Zhang, J. (2023). The effect of biochar on nitrogen availability and bacterial community in farmland. Annals of Microbiology, 73(1), 1–11. https://doi.org/10.1186/s13213-022-01708-1
Ibrahim, I. I. (2022). Efficacy of Biochar and NPK Fertilizer on Soil Properties and Yield of Okra (Abelmeschus esculentus L.) in Guinea Savanna Region of Nigeria. Journal of Environmental Bioremediation and Toxicology, 5(1), 6–10. https://doi.org/10.54987/JEBAT.V5I1.667
Ji, M., Wang, X., Usman, M., Liu, F., Dan, Y., Zhou, L., Campanaro, S., Luo, G., & Sang, W. (2022). Effects of different feedstocks-based biochar on soil remediation: A review. Environmental Pollution, 294, 118655. https://doi.org/10.1016/J.ENVPOL.2021.118655
Kannan, P., Paramasivan, M., Marimuthu, S., Swaminathan, C., & Bose, J. (2021). Applying both biochar and phosphobacteria enhances Vigna mungo L. growth and yield in acid soils by increasing soil pH, moisture content, microbial growth and P availability. Agriculture, Ecosystems and Environment, 308(August 2020), 107258. https://doi.org/10.1016/j.agee.2020.107258
Kumar, S., Rao, M. V. S. R., & Chinchmalatpure, A. R. (2017). Protocols for Soil Sampling, Soil and Water Analysis. ICAR-CSSRI. https://krishi.icar.gov.in/jspui/bitstream/123456789/10797/1/Protocol for soil sampling.pdf
Lehmann, J., Cowie, A., Masiello, C. A., Kammann, C., Woolf, D., Amonette, J. E., Cayuela, M. L., Camps-Arbestain, M., & Whitman, T. (2021). Biochar in
climate change mitigation. Nature Geoscience, 14(12), 883–892. https://doi.org/10.1038/s41561-021-00852-8
Leng, L., Huang, H., Li, H., Li, J., & Zhou, W. (2019). Biochar stability assessment methods: A review. Science of the Total Environment, 647, 210–222.
https://doi.org/10.1016/j.scitotenv.2018.07.402
Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H., & Huang, H. (2021). An overview on engineering the surface area and porosity of biochar. Science of The Total Environment, 763, 144204. https://doi.org/10.1016/J.SCITOTENV.2020.144204
Li, F., Liang, X., Niyungeko, C., Sun, T., Liu, F., & Arai, Y. (2019). Effects of biochar amendments on soil phosphorus transformation in agricultural soils.
Advances in Agronomy, 158, 131–172. https://doi.org/10.1016/BS.AGRON.2019.07.002
Liu, J., Jiang, B., Shen, J., Zhu, X., Yi, W., Li, Y., & Wu, J. (2021). Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems. Agriculture, Ecosystems & Environment, 311, 107286. https://doi.org/10.1016/J.AGEE.2020.107286
Liu, M., Linna, C., Ma, S., Ma, Q., Guo, J., Wang, F., & Wang, L. (2022). Effects of Biochar With Inorganic and Organic Fertilizers on Agronomic Traits and Nutrient Absorption of Soybean and Fertility and Microbes in Purple Soil. Frontiers in Plant Science, 13. https://doi.org/10.3389/FPLS.2022.871021
Liu, Z., Niu, W., Chu, H., Zhou, T., & Niu, Z. (2018). Effect of the Carbonization Temperature on the Properties of Biochar Produced from the Pyrolysis of Crop Residues. BioResources, 13(2), 3429–3446. https://doi.org/10.15376/biores.13.2.3429-3446
Losacco, D., Tumolo, M., Cotugno, P., Leone, N., Massarelli, C., Convertini, S., Tursi, A., Uricchio, V. F., & Ancona, V. (2022). Use of Biochar to Improve the Sustainable Crop Production of Cauliflower (Brassica oleracea L.). Plants (Basel, Switzerland), 11(9). https://doi.org/10.3390/PLANTS11091182
Lu, J., Liu, S., Chen, W., & Meng, J. (2023). Study on the mechanism of biochar affecting the effectiveness of phosphate solubilizing bacteria. World Journal of Microbiology and Biotechnology, 39(3), 1–12. https://doi.org/10.1007/S11274-023-03533-3/METRICS
MoALD. (2023). Statistical Information on Nepalese Agriculture 2078/79 (2021/22). MoALD, 269.
Murovhi, J., Phophi, M. M., & Mafongoya, P. (2020). Efficacy of plant materials in controlling aphids on okra (Abelmoschus esculentus l. moench) in limpopo province of South Africa. Agronomy, 10(12). https://doi.org/10.3390/agronomy10121968
Ndoung, O. C. N., Figueiredo, C. C. de, & Ramos, M. L. G. (2021). A scoping review on biochar-based fertilizers: enrichment techniques and agro-environmental application. Heliyon, 7(12). https://doi.org/10.1016/J.HELIYON.2021.E08473
Ng, W. C., You, S., Ling, R., Gin, K. Y. H., Dai, Y., & Wang, C. H. (2017). Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis. Energy, 139, 732–742. https://doi.org/10.1016/j.energy.2017.07.165
Novo, D. L. R., Pereira, R. M., Costa, V. C., Hartwig, C. A., & Mesko, M. F. (2018). A novel and eco-friendly analytical method for phosphorus and sulfur determination in animal feed. Food Chemistry, 246, 422–427. https://doi.org/10.1016/j.foodchem.2017.11.036
Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of Available Phosphorus in Soils by Extraction With Sodium Bicarbonate. USDA Circular, 939. https://krishi.icar.gov.in/jspui/bitstream/123456789/10797/1/Protocol for soil sampling.pdf
Purakayastha, T. J., Bera, T., Bhaduri, D., Sarkar, B., Mandal, S., Wade, P., Kumari, S., Biswas, S., Menon, M., Pathak, H., & Tsang, D. C. W. (2019). A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere, 227, 345–365. https://doi.org/10.1016/J.CHEMOSPHERE.2019.03.170
Rahayu, M., Nurmalasari, A. I., & Aini, N. N. (2022). Effect of various types and doses of biochar on hybrid maize growth. IOP Conference Series: Earth and Environmental Science, 1016(1), 012053. https://doi.org/10.1088/1755-1315/1016/1/012053
Raj, V., Shim, J. J., & Lee, J. (2020). Grafting modification of okra mucilage: Recent findings, applications, and future directions. Carbohydrate Polymers, 246. https://doi.org/10.1016/J.CARBPOL.2020.116653
Rasuli, F., Owliaie, H., Najafi-Ghiri, M., & Adhami, E. (2022). Effect of biochar on potassium fractions and plant-available P, Fe, Zn, Mn and Cu concentrations of calcareous soils. Arid Land Research and Management, 36(1), 1–26. https://doi.org/10.1080/15324982.2021.1936689
Rehman, M. Z. ur, Khalid, H., Akmal, F., Ali, S., Rizwan, M., Qayyum, M. F., Iqbal, M., Khalid, M. U., & Azhar, M. (2017). Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Environmental Pollution (Barking, Essex: 1987), 227, 560–568. https://doi.org/10.1016/J.ENVPOL.2017.05.003
Rehman, M. Z. ur, Rizwan, M., Ali, S., Naeem, A., Yousaf, B., Lui, G., Khalid, H., Saifullah, Hafeez, F., & Azhar, M. (2018). A field study investigating the potential use of phosphorus combined with organic amendments on cadmium accumulation by wheat and subsequent rice. Arabian Journal of Geosciences, 11(19). https://doi.org/10.1007/S12517-018-3961-0
Rehman, M. Z. ur, Rizwan, M., Khalid, H., Ali, S., Naeem, A., Yousaf, B., Liu, G., Sabir, M., & Farooq, M. (2018). Farmyard manure alone and combined with immobilizing amendments reduced cadmium accumulation in wheat and rice grains grown in field irrigated with raw effluents. Chemosphere, 199,
–476. https://doi.org/10.1016/J.CHEMOSPHERE.2018.02.030
Riaz, M., Khan, M., Ali, S., Khan, M. D., Ahmad, R., Khan, M. J., & Rizwan, M. (2018). Sugarcane waste straw biochar and its effects on calcareous soil and agronomic traits of okra. Arabian Journal of Geosciences, 11(23), 1–7. https://doi.org/10.1007/S12517-018-4113-2/METRICS
Romdhane, M. H., Chahdoura, H., Barros, L., Dias, M. I., Corrêa, R. C. G., Morales, P., Ciudad-Mulero, M., Flamini, G., Majdoub, H., & Ferreira, I. C. F. R. (2020). Chemical composition, nutritional value, and biological evaluation of tunisian okra pods (abelmoschus esculentus L. moench). Molecules, 25(20).
https://doi.org/10.3390/molecules25204739
Santos, C. F., Ribeiro, I. C. A., Pelegrino, M. H. P., Carneiro, J. P., & Silva, B. M. (2022). A Simple Gravimetric Methodology to Determine Soil Particle Density. Communications in Soil Science and Plant Analysis, 53(13), 1623–1629. https://doi.org/10.1080/00103624.2022.2063310
Shi, Y., Liu, X., Zhang, Q., Li, G., & Wang, P. (2022). Biochar rather than organic fertilizer mitigated the global warming potential in a saline-alkali farmland. Soil and Tillage Research, 219, 105337. https://doi.org/10.1016/J.STILL.2022.105337
Singh, H., Northup, B. K., Rice, C. W., & Prasad, P. V. V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar, 4(1), 1–17. https://doi.org/10.1007/s42773-022-00138-1
Syuhada, A. B., Shamshuddin, J., Fauziah, C. I., Rosenani, A. B., & Arifin, A. (2016). Biochar as soil amendment: Impact on chemical properties and corn nutrient uptake in a Podzol. Canadian Journal of Soil Science, 96(4), 400–412. https://doi.org/10.1139/CJSS-2015-0044/ASSET/IMAGES/LARGE/CJSS-2015-0044F010.JPEG
Toková, L., Igaz, D., Horák, J., & Aydin, E. (2020). Effect of biochar application and re‐application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam haplic luvisol. Agronomy, 10(7). https://doi.org/10.3390/agronomy10071005
Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19(1), 191–215. https://doi.org/10.1007/s11157-020-09523-3
Walters, R. D., & White, J. G. (2018). Biochar in situ decreased bulk density and improved soil-water relations and indicators in southeastern US coastal plain Ultisols. Soil Science, 183(3), 99–111. https://doi.org/10.1097/SS.0000000000000235
Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: a review. Journal of Cleaner Production, 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282
Wang, M., Xu, D., Bai, Y., Yu, G., Zhang, J., Zhang, S., Xu, J., Zhang, H., Zhang, S., & Wei, J. (2023). Dynamic investigation on potassium migration and transformation during biochar combustion and its correlation with combustion reactivity. Fuel, 340, 127540. https://doi.org/10.1016/J.FUEL.2023.127540
Wu, M., Han, X., Zhong, T., Yuan, M., & Wu, W. (2016). Soil organic carbon content affects the stability of biochar in paddy soil. Agriculture, Ecosystems and Environment, 223, 59–66. https://doi.org/10.1016/J.AGEE.2016.02.033
Yang, X., Tsibart, A., Nam, H., Hur, J., El-Naggar, A., Tack, F. M. G., Wang, C. H., Lee, Y. H., Tsang, D. C. W., & Ok, Y. S. (2019). Effect of gasification biochar application on soil quality: Trace metal behavior, microbial community, and soil dissolved organic matter. Journal of Hazardous Materials, 365, 684–694. https://doi.org/10.1016/j.jhazmat.2018.11.042
Zhang, P., Yang, F., Zhang, H., Liu, L., Liu, X., Chen, J., Wang, X., Wang, Y., & Li, C. (2020). Beneficial Effects of Biochar-Based Organic Fertilizer on Nitrogen Assimilation, Antioxidant Capacities, and Photosynthesis of Sugar Beet (Beta vulgaris L.) under Saline-Alkaline Stress. Agronomy 2020, Vol. 10, Page 1562, 10(10), 1562. https://doi.org/10.3390/AGRONOMY10101562
Zhao, H., Xie, T., Xiao, H., & Gao, M. (2022). Biochar-Based Fertilizer Improved Crop Yields and N Utilization Efficiency in a Maize–Chinese Cabbage
Rotation System. Agriculture 2022, Vol. 12, Page 1030, 12(7), 1030. https://doi.org/10.3390/AGRICULTURE12071030

Published
How to Cite
Issue
Section
Copyright (c) 2024 Agriculture and Environmental Science Academy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.