An ideal model of plant-vector-phytopathogen interaction and the management of the vector

Bipin Bastakoti 1

1   Department of Environmental Resource Sciences, University of Louisiana at Lafayette, USA

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2024.0901027

doi

Abstract

Maize (Zea mays L.) is a vital cereal crop worldwide, crucial for global food security and various industrial applications. Its cultivation faces significant challenges from a diverse array of insect pests and pathogens, notably including the maize leaf aphid (Rhopalosiphum maidis) and the maize dwarf mosaic virus (MDMV). This paper explores the intricate interactions among maize, its insect vectors, and MDMV, emphasizing the urgent need for a deeper understanding to develop sustainable management strategies. Maize exhibits vast genetic diversity and is cultivated across diverse environments, making it susceptible to a range of pests and diseases. The transmission of MDMV by aphids, particularly R. maidis, poses a significant threat to maize production globally. The complex tripartite interaction between maize, aphids, and MDMV serves as an ideal model system for studying plant-insect-phytopathogen interactions. Understanding the components of this interaction is critical for developing effective management strategies. Despite significant research efforts, there remains a knowledge gap in the molecular mechanisms underlying vector-borne diseases. Further research on the molecular level is essential for identifying specific targets for genetic pest control and disrupting pathogen transmission by insect vectors. Developing countries, in particular, require intensified research efforts to address the growing challenges to food security and agricultural sustainability. Thus, unraveling the complexities of plant-insect-phytopathogen interactions is essential for devising effective strategies to combat vector-borne diseases and sustain global food systems. Enhanced scientific research, especially in developing regions, is crucial for addressing these challenges and ensuring food security for future generations.

Keywords:

IPM, Maize dwarf mosaic virus, Maize leaf aphid

Downloads

Download data is not yet available.

References

Abate, T., Fisher, M., Abdoulaye, T., Kassie, G. T., Lunduka, R., Marenya, P., & Asnake, W. (2017). Characteristics of maize cultivars in Africa: How modern are they and how many do smallholder farmers grow? Agriculture and Food Security, 6(1), 1–17. https://doi.org/10.1186/S40066-017-0108-6/FIGURES/4

Atreya, C. D., Raccah, B., & Pirone, T. P. (1990). A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology, 178(1), 161–165. https://doi.org/10.1016/0042-6822(90)90389-9

Atson, M. A. W., & Oberts, F. M. R. (1939). A comparative study of the transmission of Hyoscyamus virus 3, potato virus Y and cucumber virus 1 by the vectors Myzus persicae (Sulz), M. circumflexus (Buckton), and Macrosiphum gei (Koch). Proceedings of the Royal Society of London. Series B - Biological Sciences, 127(849), 543–576. https://doi.org/10.1098/RSPB.1939.0039

Bancroft, J. B., Ullstrup, A. J., Messieha, M., Bracker, C. E., & Snazelle, T. E. (1966). Some biological and physical properties of a midwestern isolate of Maize dwarf mosaic virus. Phytopathology, 56, 474–478.

Baumgarten, G. von. (1981). Purification and Partial Characterization of Maize Dwarf Mosaic Virus Strain A. Phytopathology, 71(1), 36. https://doi.org/10.1094/PHYTO-71-36

Buss, E. A. (2006). Aphids on Landscape Plants. Edis, 2006(12). https://doi.org/10.32473/edis-mg002-2006

Cao, P., Eckstein, H. H., De Rango, P., Setacci, C., Ricco, J. B., De Donato, G., Becker, F., Robert-Ebadi, H., Diehm, N., Schmidli, J., Teraa, M., Moll, F. L., Dick, F., Davies, A. H., Lepäntalo, M., & Apelqvist, J. (2011). Chapter II: Diagnostic methods. European Journal of Vascular and Endovascular Surgery, 42(SUPPL. 2), 13–32. https://doi.org/10.1016/S1078-5884(11)60010-5

Chauhan, R. (1985). A Study of Filamentous viruses in Maize and smallgrains. In University of Cape Town.

Deng, C. L., Wang, W. J., Wang, Z. Y., Jiang, X., Cao, Y. Y., Zhou, T., Wang, F. R., Li, H. F., & Fan, Z. F. (2008). The genomic sequence and biological properties of Pennisetum mosaic virus, a novel monocot-infecting potyvirus. Archives of Virology, 153(5), 921–927. https://doi.org/10.1007/s00705-008-0068-z

Dixon, A. F. G. (1977). APHID ECOLOGY: Life Cycles, Polymorphism, and Population Regulation. Ann. Rev. Ecol. Syst, 8, 329–353. www.annualreviews.org

Drost, D., Volesky, N., Murray, M., & Alston, D. (2020). Utah Vegetable Production and Pest Management Guide. Utah State University Extension IPM Program. https://extension.usu.edu/vegetableguide/files/UT-Veg-Guide-2020a.pdf

Ehler, L. E. (2006). Perspectives Integrated pest management (IPM): definition, historical development and implementation, and the other IPM.

https://doi.org/10.1002/ps.1247

FAO. (2002). The world food system: sustained improvement in food availability. https://www.fao.org/3/y4683e/y4683e06.htm

Fletcher, J., & Wayadanda, A. (2002). Fastidious Vascular-Colonizing Bacteria. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2002-1218-02

Flint, M. L. (2012). IPM in Practice, 2nd Edition: Principles and Methods of Integrated Pest ... - Mary Louise Flint - Google Books. https://books.google.com.np/books?hl=en&lr=&id=4MtgeUgjwNcC&oi=fnd&pg=PP2&dq=What+are+the+physical+methods+of+IPM&ots=a_ggQxnK7y&sig=nt1LTSX33OxBpHDkcAzxeprABSE&redir_esc=y#v=onepage&q=What are the physical methods of IPM&f=false

Flint, M. L. (2016). Aphids Management Guidelines--UC IPM. Agriculture and Natural Resources, University of California. http://ipm.ucanr.edu/PMG/PESTNOTES/pn7404.html

Gell, G., Sebestyén, E., & Balázs, E. (2015). Recombination analysis of Maize dwarf mosaic virus (MDMV) in the Sugarcane mosaic virus (SCMV) subgroup of potyviruses. Virus Genes, 50(1), 79–86. https://doi.org/10.1007/s11262-014-1142-0

Gough, K. H., & Shukla, D. D. (1993). Nucleotide Sequence of Johnsongrass Mosaic Potyvirus Genomic RNA. Intervirology, 181–192.

Gregory, L. V., & Ayers, J. E. (1982). Effect of Inoculation with Maize Dwarf Mosaic Virus at Several Growth Stages on Yield of Sweet Corn. Plant Disease, 66(1), 801. https://doi.org/10.1094/PD-66-801

Hill, J. H., Ford, R. E., & Benner, H. I. (1973). Purification and partial characterization of maize dwarf mosaic virus strain B (sugarcane mosaic virus). Journal of General Virology, 20(3), 327–339. https://doi.org/10.1099/0022-1317-20-3-327/CITE/REFWORKS

Hogenhout, S. A., Ammar, E. D., Whitfield, A. E., & Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327–359. https://doi.org/10.1146/annurev.phyto.022508.092135

Jones, M. W., Boyd, E. C., & Redinbaugh, M. G. (2011). Responses of maize (Zea mays L.) near isogenic lines carrying Wsm1, Wsm2, and Wsm3 to three viruses in the potyviridae. Theoretical and Applied Genetics, 123(5), 729–740. https://doi.org/10.1007/s00122-011-1622-8

Kannan, M., Ismail, I., & Bunawan, H. (2018). Maize dwarf mosaic virus: From genome to disease management. Viruses, 10(9), 1–23. https://doi.org/10.3390/v10090492

Kenis, M., Hurley, B. P., Hajek, A. E., & Cock, M. J. W. (2017). Classical biological control of insect pests of trees: facts and figures. Biological Invasions, 19(11), 3401–3417. https://doi.org/10.1007/S10530-017-1414-4/FIGURES/9

Klopfenstein, T. J., Erickson, G. E., & Berger, L. L. (2013). Maize is a critically important source of food, feed, energy and forage in the USA. Field Crops Research, 153, 5–11. https://doi.org/10.1016/j.fcr.2012.11.006

Kong, P., & Steinbiss, H. H. (1998). Complete nucleotide sequence and analysis of the putative polyprotein of maize dwarf mosaic virus genomic RNA (Bulgarian isolate). Archives of Virology, 143(9), 1791–1799. https://doi.org/10.1007/s007050050417

Kunkel, L. O. (1921). A possible causative agent for the mosaic disease of corn. Hawaii Sugar Planters Association Experiment Station Bulletin.

https://www.cabdirect.org/cabdirect/abstract/20057002131

Matthews, R. E. F. (1989). The classification and nomenclature of viruses: Summary of results of meetings of the international committee on taxonomy of viruses in Edmonton, Canada 1987. Intervirology, 30(4), 181–186. https://doi.org/10.1159/000150091

Miedaner, T., & Juroszek, P. (2021). Global warming and increasing maize cultivation demand comprehensive efforts in disease and insect resistance breeding in north-western Europe. Plant Pathology, 70(5), 1032–1046. https://doi.org/10.1111/PPA.13365

Morales, H., Perfecto, I., & Ferguson, B. (2001). Traditional fertilization and its effect on corn insect populations in the Guatemalan highlands. Agriculture, Ecosystems and Environment, 84(2), 145–155. https://doi.org/10.1016/S0167-8809(00)00200-0

Moury, B., Dé Ric Fabre, F., & Senoussi, R. (2007). Estimation of the number of virus particles transmitted by an insect vector. www.pnas.orgcgidoi10.1073pnas.0702739104

Murdia, L. K., Wadhwani, R., Wadhawan, N., Bajpai, P., & Shekhawat, S. (2016). Maize Utilization in India: An Overview. American Journal of Food and Nutrition, 4(6), 169–176. https://doi.org/10.12691/ajfn-4-6-5

Nault, L. R. (1997). Arthropod Transmission of Plant Viruses: a New Synthesis. Annals of the Entomological Society of America, 90(5), 521–541.

https://doi.org/10.1093/AESA/90.5.521

Ortega C, A., International, M., & Wheat Improvement, C. (1987). Insect pests of maize: a guide for field identification by Alejandro Ortega C. vi, 106 col. ill. 19 cm.

Parrish, W. B. (1967). The Origin, Morphology, and Innervation of Aphid Stylets (Homoptera). Annals of the Entomological Society of America, 60(1), 273–276. https://doi.org/10.1093/AESA/60.1.273

Perera, K. T. G. ., & Weerasinghe, T. K. (2014). A Study on the Impacts of Corn cultivation (Zea mays (L.) Family-Poaceae) on the properties of Soil. International Journal of Scientific and Research Publications, 4(7). www.ijsrp.org

Peshin, R., & Zhang, W. (2014). Integrated Pest Management and Pesticide Use. Integrated Pest Management: Pesticide Problems, Vol.3, 1–46.

https://doi.org/10.1007/978-94-007-7796-5_1

Petrik, K., Sebestyén, E., Gell, G., & Balázs, E. (2010). Natural insertions within the N-terminal region of the coat protein of Maize dwarf mosaic potyvirus (MDMV) have an effect on the RNA stability. Virus Genes, 40(1), 135–139. https://doi.org/10.1007/s11262-009-0425-3

Pincebourde, S., van Baaren, J., Rasmann, S., Rasmont, P., Rodet, G., Martinet, B., & Calatayud, P. A. (2017). Plant–Insect Interactions in a Changing World. In Advances in Botanical Research (Vol. 81). Elsevier Ltd. https://doi.org/10.1016/bs.abr.2016.09.009

Pirone, T. P., & Blanc, S. (2003). HELPER-DEPENDENT VECTOR TRANSMISSION OF PLANT VIRUSES. http://Dx.Doi.Org/10.1146/Annurev.Phyto.34.1.227, 34, 227–247. https://doi.org/10.1146/Annurev.Phyto.34.1.227

Ranum, P., Peña, J. P., Peña-Rosas, P., Garcia-Casal, M. N., & Nieves Garcia-Casal, M. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 105–112. https://doi.org/10.1111/NYAS.12396

Salomon, R., & Bernardi, F. (1995). Inhibition of Viral Aphid Transmission by the N-Terminus of the Maize Dwarf Mosaic Virus Coat Protein. Virology, 213(2), 676–679. https://doi.org/10.1006/VIRO.1995.9961

Sarwar, M. (2017). Integrated Management of Insect Pests on Canola and Other Brassica Oilseed Crops in Pakistan- Google Books. CAB International.

Serna-Saldivar, S. O., & Carrillo, E. P. (2018). Food uses of whole corn and dry-milled fractions. In Corn: Chemistry and Technology, 3rd Edition (3rd ed., Issue 2018). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811971-6.00016-4

Song, F., & Swinton, S. M. (2009). Returns to Integrated Pest Management Research and Outreach for Soybean Aphid. Journal of Economic Entomology, 102(6), 2116–2125. https://doi.org/10.1603/029.102.0615

Stoner, W. N., Williams, L. E., & Alexander, L. J. (1964). Transmission by the Corn Leaf Aphid , Rhopalosiphum MaWis ( Fitch ) of a Virus Infecting Corn in Ohio. Research Circular, 136.

Straub, R. W., & Boothroyd, C. W. (1980). Relationship of Corn Leaf Aphid and Maize Dwarf Mosaic Disease to Sweet Corn Yields in Southeastern New York12. Journal of Economic Entomology, 73(1), 92–95. https://doi.org/10.1093/jee/73.1.92

Tang, S., Xiao, Y., Chen, L., & Cheke, R. A. (2005). Integrated pest management models and their dynamical behaviour. Bulletin of Mathematical Biology, 67(1), 115–135. https://doi.org/10.1016/j.bulm.2004.06.005

Teyssandier, E. E., Nome, S. F., & Dal Bo, E. (1983). Maize virus diseases in Argentina. Ohio Agriculture Research and Development Center. https://agris.fao.org/agris-search/search.do?recordID=US8733584

Thongmeearkom, P., Ford, R. E., & Jedlinski, H. (1975). Aphid Transmission of Maize Dwarf Mosaic Virus Strains.

Tosic, M., Ford, R. E., Shukla, D. D., & Jilka, J. (1990). Differentiation of Sugarcane, Maize Dwarf, Johnsongrass, and Sorghum Mosaic Viruses Based on Reactions of Oat and Some Sorghum Cultivars. In Plant Disease (Vol. 74, Issue 8, p. 549). https://doi.org/10.1094/pd-74-0549

Trzmiel, K. (2008). Detection of Maize Dwarf Mosaic Virus (MDMV). Progress in Plant Protection, 48(3), 1126–1129.

Tsai, J. H., & Falk, B. W. (2022). Insect Vectors and Their Pathogens of Maize in the Tropics | Radcliffe’s IPM World Textbook. Radcliffe’s IPM World Textbook. https://ipmworld.umn.edu/tsai-maize-tropics

Valenzuela, I., & Hoffmann, A. A. (2015). Effects of aphid feeding and associated virus injury on grain crops in Australia. Austral Entomology, 54(3), 292–305. https://doi.org/10.1111/AEN.12122

Wang, R. Y., Ammar, E. D., Thornbury, D. W., Lopez-Moya, J. J., & Pirone, T. P. (1996). Loss of potyvirus transmissibility and helper-component activity correlate with non-retention of virions in aphid stylets. Journal of General Virology, 77(5), 861–867. https://doi.org/10.1099/0022-1317-77-5-861/CITE/REFWORKS

Wang, R. Y., & Pirone, T. P. (1996). Potyvirus transmission is not increased by pre-acquisition fasting of aphids reared on artificial diet. Journal of General Virology, 77(12), 3145–3148. https://doi.org/10.1099/0022-1317-77-12-3145

Wildermuth, V. L., & Walter, E. V. (1932). Biology and Control of the corn leaf aphid with special reference to the South Western States. United States Department of Agriculture Washington, D.C., 10–27.

Williamson, J. (2019). Integrated Pest Management (I.P.M.) for Aphids | Home & Garden Information Center. https://hgic.clemson.edu/factsheet/integrated-pest-management-i-p-m-for-aphids/

Witt, C., Pasuquin, J. M., & Dobermann, A. (2006). Towards a Site-Specific Nutrient Management Approach for Maize in Asia. Better Crops, 90(2).

Yang, N., Liu, J., Gao, Q., Gui, S., Chen, L., Yang, L., Huang, J., Deng, T., Luo, J., He, L., Wang, Y., Xu, P., Peng, Y., Shi, Z., Lan, L., Ma, Z., Yang, X., Zhang, Q., Bai, M., & Yan, J. (2019). Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics 2019 51:6, 51(6), 1052–1059. https://doi.org/10.1038/s41588-019-0427-6

Yoon-Sup, S. (2003). Corn Leaf Aphid and Polysor Rust Resistance in Tropical Maize. Graduate Division of the University of Hawaii, 1116/MENKE, 1–22. http://dx.doi.org/10.1016/j.tecto.2012.06.047

Published

2024-03-25

How to Cite

Bastakoti, B. (2024). An ideal model of plant-vector-phytopathogen interaction and the management of the vector. Archives of Agriculture and Environmental Science, 9(1), 194-200. https://doi.org/10.26832/24566632.2024.0901027

Issue

Section

Review Articles