Enhancing rice yields through foliar application of essential micronutrients: A study on zinc, copper, and boron nutrition in context of Nepal

Lokendra Nath Yogi 1 , Sarada Bhandari 2 , Tara Thalal 3 , Madhab Bhattarai 4 , Ajay Upadhyay 5 , Babin Kharel 6

1   Institute of Agriculture and Animal Science, Tribhuvan University, NEPAL
2   Institute of Agriculture and Animal Science, Tribhuvan University, NEPAL
3   Institute of Agriculture and Animal Science, Tribhuvan University, NEPAL
4   Institute of Agriculture and Animal Science, Tribhuvan University, NEPAL
5   Institute of Agriculture and Animal Science, Tribhuvan University, NEPAL
6   Institute of Agriculture and Animal Science, Tribhuvan University, NEPAL

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2024.0902024

doi

Abstract

Quantitative data on the effects of essential micronutrients—boron, zinc, and copper—on rice (Oryza sativa L.) are limited, which hampers optimized crop management strategies. This study aimed to enhance rice yields through the foliar application of these micronutrients. Conducted in 2022 at Gokuleshwor Agriculture and Animal Science College using a randomized complete block design with three replications, the research tested different combinations of these
elements on the local rice variety Kaljade. The treatments included: T1 (control), T2 (zinc), T3 (copper), T4 (boron), T5 (Zn + Cu + B), T6 (Zn + Cu), and T7 (Zn + B), with doses of 5 kg/ha for zinc and 2 kg/ha each for boron and copper. The results demonstrated significant effects of the micronutrient treatments on all parameters studied. Notably, the combination of zinc, copper, and boron (Zn + Cu + B) led to the most favorable outcomes. This treatment resulted in the shortest maturity duration (116.3 days after transplanting), the highest number of tillers (22.5), and the tallest plant height (107.7 cm). Additionally, Zn + Cu + B produced the greatest leaf area index (0.0724), the highest number of grains per panicle (22.6), and the heaviest thousand-grain weight (21.83 g). Furthermore, Zn + Cu + B achieved the highest biological yield (12.35 t/ha) and grain yield (5.9 t/ha), markedly higher than the control treatment (4.12 t/ha). These findings highlight the significant role of zinc, copper, and boron in rice cultivation. The study underscores the potential of foliar application techniques to optimize micronutrient availability, thereby enhancing rice yields. For future agricultural practices in the study area, focusing on zinc, copper, and boron nutrition is crucial to further augment crop productivity and ensure food security.

Keywords:

Foliar, Micronutrients, Production, Rice

Downloads

Download data is not yet available.

References

Arif, M., Shehzad, M. A., Bashir, F., Tasneem, M., Yasin, G., & Iqbal, M. (2012). Boron, zinc, and microtone effects on growth, chlorophyll contents, and yield attributes in rice (Oryza sativa L.) cultivar. African Journal of Biotechnology, 11(48), 10851-10858.

Asad, A., & Rafique, R. (2000). Effect of zinc, copper, manganese and boron on the yield and yield components of wheat crop in Tehsil Peshawar. Pakistan Journal of Biological Science, 3(10), 1615-1620.

Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic and genetic biofortification. Plant and Soil, 302, 1-17.

Chandrasekaran, B., Annadurai, K. & Somasundaram, E (2010). A Textbook of Agronomy: New Age International Limited, Delhi, India.

Chang, H. B., Lin, C. W., & Huang, H. J. (2005). Zinc-induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regulation, 46(3), 261-266.

Chaudry, E. H., Timmer, V., Javed, A. S., & Siddique, M. T. (2007). Wheat response to micronutrients in rain-fed areas of Punjab. Soil & Environment, 26, 97-101.

Dobermann, A., & Fairhurst, T. (2000). Rice – Nutrient Disorder and Nutrient Management (1st ed.). Los Baños, Laguna: IRRI and Singapore: Potash & Phosphate Institute.

Dubey, S. K., Tiwari, D. D., Pandey, S. B., Singh, U. N., & Katiyar, N. K. (2016). Effect of nitrogen, sulfur, and zinc application on yield, nutrient uptake and quality of rice. Research on Crops, 17(1).

El-Nahhal Y, Safi M, Tubail K, Safi J. (2013) Effect of treated wastewater irrigation on plant growth and soil properties in Gaza Strip Palestine. American Journal of Plant Science, 4(9), 1736-1743.

Fageria, N. K. (2009). The use of nutrients in crop plants. Boca Raton, FL: CRC Press.

Guenis, A., Alpaslan, M., & Unal, A. (2003). Effects of boron fertilization on the yield and some yield components of bread and durum wheat. Turkish Journal of Agriculture, 27, 329-335.

Guo, J. X., Feng, X. M., Hu, X. Y., Tian, G. L., Ling, N., Wang, J. H., & Guo, S. W. (2016). Effects of soil zinc availability, nitrogen fertilizer rate and zinc fertilizer application method on zinc biofortification of rice. Journal of Agricultural Science, 154(4), 584-597.

Huang, L., Pant, J., Dell, B., & Bell, R. W. (2000). Effects of boron deficiency on anther development and floret fertility in wheat (Triticum aestivum L. Wilgoyne). Annals of Botany, 85(4), 493-500.

Hussain, N., Khan, M. A., & Javed, M. A. (2002). Effect of foliar application of plant micronutrient mixture on growth and yield of wheat. Pakistan Journal of Biological Science, 8(8), 1096-1099.

Irshad, M., Gill, M. A., Aziz, T., & Ahmad, R. (2004). Growth response of cotton cultivars to zinc deficiency stress in chelator-buffered nutrient solution. Pakistan Journal of Botany, 36, 373-380.

Jafari, M., Heidari Sharifabad, H., Noormohamadi, G., Sadeghian Motahar, S. Y., & Siadat, S. A. (2012). The effect of zinc, boron, and copper foliar application, on yield and yield components in wheat (Triticum aestivum). Annals of Biological Research, 3(8), 3875-3884.

Jamjod, S., & Rerkasem, B. (1999). Genotypic variation in response of barley to boron deficiency. Plant and Soil, 215(1), 65-72.

Liew, Y. A., Syed Omar, S. R., Husni, M. H. A., & Zainal, A. M. A. (2012). Effects of foliar applied copper and boron and fungal disease and rice yield on cultivar MR219. Pertanika Journal of Tropical Agriculture Science, 35(2), 339-349.

Manal, F. M., Thalooth, A. T., & Khalifa, R. K. M. (2010). Effect of foliar spraying with uniconazole and micronutrients on yield and nutrients uptake of wheat plants grown under saline condition. Journal of American Science, 6(8), 398-404.

Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). Academic Press, London, England.

Modaihsh, A. S. (1997). Foliar application of chelated and non-chelated metals for supplying micro-nutrients to wheat grown calcareous soils. Experimental Agriculture, 33, 237-245.

Mortvedt, J. J. (2000). Bioavailability of micronutrients. In E. J. Kamprath (Ed.), Soil Fertility and Plant Nutrition (pp. D71-D86). Boca Raton, FL: CRC Press.

Nadeem, F., & Farooq, M. (2019). Application of micronutrients in rice-wheat cropping system of South Asia. Rice Science, 26(6), 356-371.

Najafi Tirtashi, A., Mahmmudi, M., & Barari Tari, D. (2016). Survey effect of foliar application of nutrients on rice (Oryza sativa L.) morphological traits and yield. The Crop Ecophysiology Science Magazine, 8(3), 295-303.

Quddus, M. A., Rasid, M. H., Hassain, M. A., & Naser, H. M. (2011). Effect of zinc and boron on yield and yield contributing characters of mungbean in low Ganges River flood plain soil at Madaripur, Bangladesh. Bangladesh Journal of Agriculture Research, 36(1), 75-85.

Rahman, K. M., Chowdhury, M. A. K., Sharmeen, F., Sarkar, A., Hye, M. A., Biswas, G. C., & Sarkar, A. (2011). Effect of zinc and phosphorus on yield of Oryza sativa (cv. BR11). Bangladesh Research Publication Journal, 5(4), 351-358.

Rehm, G., & Albert, S. (2006). Micronutrients and production of hard red spring wheat. Minnesota Crop e-News, 7 March 2006, 1-3.

Sharma, J., Gupta, A. K., Kumar, C., & Gautam, R. K. S. (2013). Influence of zinc, calcium, and boron on vegetative and flowering parameters of Gladiolus cv. Alberan. The Bioscan, 8(4), 1153-1158.

Singh, A. K., & Singh, V. (2018). Effect of foliar application of iron, zinc, and age of seedlings on growth and yield of rice (Oryza sativa L.). International Journal of Current Microbiology and Applied Science, 7(8), 1062-1068.

Soylu, S., Sade, B., Topal, A., Akgun, N., & Gezgin, S. (2005). Responses of irrigated durum and bread wheat cultivars to boron application in low boron calcareous soil. Turkish Journal of Agriculture, 29, 275-286.

Stangoulis, J. C. R., & Graham, R. D. (2007). Boron and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral Nutrition and Plant Disease (pp. 207-214). USA: The American Phytopathological Society.

Taiz, L., & Zeiger, E. (2011). Plant physiology (5th ed.). Sinauer Associates, Sunderland, England.

Tripathi, D. K., Sing, S., Sing, S., Mahara, S., Chauhan, D. K., & Dubey, N. K. (2015). Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Physiologiae Plantarum, 37, 139.

Wissuwa, M., Ismail, A. M., & Yanagihara, S. (2006). Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiology, 142(2), 731-741.

Zayed, B. A., Salem, A. K. M., & El Sharkawy, H. M. (2011). Effect of different micronutrient treatments on rice (Oryza sativa L.) growth and yield under saline soil conditions. World Journal of Agriculture Science, 7(2), 179-184.

Published

2024-06-25

How to Cite

Yogi, L. N., Bhandari, S., Thalal, T., Bhattarai, M., Upadhyay, A., & Kharel, B. (2024). Enhancing rice yields through foliar application of essential micronutrients: A study on zinc, copper, and boron nutrition in context of Nepal . Archives of Agriculture and Environmental Science, 9(2), 373-378. https://doi.org/10.26832/24566632.2024.0902024

Issue

Section

Research Articles