Comparative analysis of red and green lettuce microgreens under different artificial LED lighting conditions
Abstract
This study investigated how LED light exposure influences the growth and nutrient content of two lettuce microgreens over 10 days in a randomized setup. Lettuce seeds underwent surface sterilization, germination in prepared soil, and exposure to different LED light conditions. Morphological parameters and pigment analysis, including stem length, petiole length, leaf area, plant height, root length, fresh weight, dry matter percentage, were evaluated. Green lettuce outperformed red lettuce in the studied morphological parameters, including stem length (2.74±0.22 cm), plant height (4.54±0.21 cm), and fresh weight (3.79±0.32 g/100 plants) under different LED. White light promoted taller plants with higher fresh weight (4.45±0.43 g/100plants), dry matter (4.84±0.38%), and leaf area (0.76±0.06 cm2) in both lettuce species. In contrast, red light reduced overall growth and development, as evidenced by a 54% decrease in leaf area, despite a 23.36% increase in plant height. Chlorophyll levels varied significantly among LED treatments, with white LED yielding the highest levels in both red and green lettuce. Highest chlorophyll a (146.37±6.27 µg/g FW), chlorophyll b (86.74±2.44 µg/g FW), total chlorophyll (233.11±8.69 µg/g FW) and relative chlorophyll (215.84±8.05 µg/cm²) content was found in green lettuce under white light condition. Similarly, green lettuce grown under white LED had the highest total carotenoid, β-carotene, and lutein. The study concludes that optimizing white LED illumination has the potential to improve the nutritional value of lettuce microgreens by enhancing growth and pigment content, particularly in green varieties. These findings emphasize the crucial role of LED light color in optimizing the nutritional quality of microgreens.
Keywords:
Growth parameters, LED, Microgreens, Pigments, Red and green lettuceDownloads
References
Alrajhi, A. A., Alsahli, A. S., Alhelal, I. M., Rihan, H. Z., Fuller, M. P., Alsadon, A. A., & Ibrahim, A. A. (2023). The effect of LED light spectra on the growth, yield and nutritional value of red and green lettuce (Lactuca sativa). Plants, 12(3), 463. https://doi.org/10.3390/plants12030463
Ashdown, I. (2015). Photometry and photosynthesis: From photometry to PPFD (Revised). Wordpress Blog.
Baidya, A., Akter, T., Islam, M. R., Shah, A. K. M. A., Hossain, M. A., Salam, M. A., & Paul, S. I. (2021). Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea. Heliyon, 7(12), e08525. https://doi.org/10.1016/j.heliyon.2021.e08525
Britton, G., Liaaen-Jensen, S., & Pfander, H. (Eds.). (2004). Carotenoids: Handbook. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7836-4
Chen, X., Yang, Q., Song, W., Wang, L., Guo, W., & Xue, X. (2017). Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Scientia Horticulturae, 223, 44–52. https://doi.org/10.1016/j.scienta.2017.04.037
Darko, E., Heydarizadeh, P., Schoefs, B., & Sabzalian, M. R. (2014). Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1640), 20130243. https://doi.org/10.1098/rstb.2013.0243
Dou, H., Niu, G., Gu, M., & Masabni, J. (2017). Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. Horticulturae, 3(2), 36. https://doi.org/10.3390/horticulturae3020036
Kyriacou, M.C., El-Nakhel, C., Pannico, A., Graziani, G., Soteriou, G.A., Giordano, M., Zarrelli, A., Ritieni, A., De Pascale, S., & Rouphael, Y. (2019). Genotype-specific modulatory effects of select spectral bandwidths on the nutritive and phytochemical composition of microgreens. Frontiers in Plant Science, 10, 1501. https://doi.org/10.3389/fpls.2019.01501
Lee, S., Park, C. H., Kim, J. K., Ahn, K., Kwon, H., Kim, J. K., Park, S. U., & Yeo, H. J. (2023). LED lights influenced phytochemical contents and biological activities in Kale (Brassica oleracea L. var. Acephala) Microgreens. Antioxidants (Basel, Switzerland), 12(9). https://doi.org/10.3390/antiox12091686
Alrajhi, A. A., Alsahli, A. S., Alhelal, I. M., Rihan, H. Z., Fuller, M. P., Alsadon, A. A., & Ibrahim, A. A. (2023). The effect of LED light spectra on the growth, yield and nutritional value of red and green lettuce (Lactuca sativa). Plants, 12(3), 463. https://doi.org/10.3390/plants12030463
Ashdown, I. (2015). Photometry and photosynthesis: From photometry to PPFD (Revised). Wordpress Blog.
Baidya, A., Akter, T., Islam, M. R., Shah, A. K. M. A., Hossain, M. A., Salam, M. A., & Paul, S. I. (2021). Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea. Heliyon, 7(12), e08525. https://doi.org/10.1016/j.heliyon.2021.e08525
Britton, G., Liaaen-Jensen, S., & Pfander, H. (Eds.). (2004). Carotenoids: Handbook. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7836-4
Chen, X., Yang, Q., Song, W., Wang, L., Guo, W., & Xue, X. (2017). Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Scientia Horticulturae, 223, 44–52. https://doi.org/10.1016/j.scienta.2017.04.037
Darko, E., Heydarizadeh, P., Schoefs, B., & Sabzalian, M.R. (2014). Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1640), 20130243. https://doi.org/10.1098/rstb.2013.0243
Dou, H., Niu, G., Gu, M., & Masabni, J. (2017). Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. Horticulturae, 3(2), 36. https://doi.org/10.3390/horticulturae3020036
Kyriacou, M. C., El-Nakhel, C., Pannico, A., Graziani, G., Soteriou, G. A., Giordano, M., Zarrelli, A., Ritieni, A., De Pascale, S., & Rouphael, Y. (2019). Genotype-specific modulatory effects of select spectral bandwidths on the nutritive and phytochemical composition of microgreens. Frontiers in Plant Science, 10, 1501. https://doi.org/10.3389/fpls.2019.01501
Lee, S., Park, C. H., Kim, J. K., Ahn, K., Kwon, H., Kim, J. K., Park, S. U., & Yeo, H. J. (2023). LED lights influenced phytochemical contents and biological activities in Kale (Brassica oleracea L. var. Acephala) Microgreens. Antioxidants (Basel, Switzerland), 12(9). https://doi.org/10.3390/antiox12091686
Lichtenthaler, H. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148C, 350–382. https://doi.org/10.1016/0076-6879(87)48036-1
Mampholo, B. M., Maboko, M. M., Soundy, P., & Sivakumar, D. (2016). Phytochemicals and overall quality of leafy lettuce ( Lactuca sativa L.) varieties grown in closed hydroponic system. Journal of Food Quality, 39(6), 805–815. https://doi.org/10.1111/jfq.12234
Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1), 1–16. https://doi.org/10.1007/s11418-019-01364-x
Martínez-Ispizua, E., Calatayud, Á., Marsal, J. I., Cannata, C., Basile, F., Abdelkhalik, A., Soler, S., Valcárcel, J. V., & Martínez-Cuenca, M. R. (2022). The nutritional quality potential of microgreens, baby leaves, and adult lettuce: An underexploited nutraceutical source. Foods, 11(3), 423. https://doi.org/10.3390/foods11030423
Orlando, M., Trivellini, A., Incrocci, L., Ferrante, A., & Mensuali, A. (2022). The inclusion of green light in a red and blue light background impact the growth and functional quality of vegetable and flower microgreen species. Horticulturae, 8(3), 217. https://doi.org/10.3390/horticulturae8030217
Polash, M. A. S., Sakil, A., Sazia, S., & Hossain, A. (2019). Selection of suitable growing media and nutritional assessment of microgreens. Agricultural Research Journal, 56(4), 752. https://doi.org/10.5958/2395-146X.2019.00116.9
Saleem, M. K., & Muhammaf, I. F. (2019). Effect of Different Colors of Lights on Growth and Antioxidants Capacity in Rapeseed (Brassica Napus L.) Seedlings. Agricultural and Food Sciences, Environmental Science, 4, 1045.
Sena, S., Kumari, S., Kumar, V., & Husen, A. (2024). Light emitting diode (LED) lights for the improvement of plant performance and production: A comprehensive review. Current Research in Biotechnology, 7, 100184. https://doi.org/10.1016/j.crbiot.2024.100184
Seyedi, F. S., Nafchi, M. G., & Reezi, S. (2024). Effects of light spectra on morphological characteristics, primary and specialized metabolites of Thymus vulgaris L. Heliyon, 10(1), e23032. https://doi.org/10.1016/j.heliyon.2023.e23032
Sinaga, A. N. K., Zahra, A. M., Nugroho, E., Simatupang, H. K., Pitaloka, N. D., Annisa, H. N., & Pahlawan, M. F. R. (2023). Hydroponic NFT-based indoor farming of red and green lettuce microgreens in response to artificial lighting. In: Proceedings of the 3rd International Conference on Smart and Innovative Agriculture (ICoSIA 2022), 29, 625–634. Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-122-7_59
Treadwell, D., Hochmuth, R., Landrum, L., & Laughlin, W. (2020). Microgreens: A new specialty crop. EDIS, 5. https://doi.org/10.32473/edis-hs1164-2020
Trivellini, A., Toscano, S., Romano, D., & Ferrante, A. (2023). The role of blue and red light in the orchestration of secondary metabolites, nutrient transport and plant quality. Plants (Basel, Switzerland), 12(10). https://doi.org/10.3390/plants12102026
Xiao, Z., Lester, G.E., Luo, Y., & Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of Agricultural and Food Chemistry, 60(31), 7644–7651. https://doi.org/10.1021/jf300459b
Xiao, Z., Lester, G., Park, E., Saftner, R., Luo, Y., & Wang, Q. (2015). Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens. Postharvest Biology and Technology, 110, 140–148. https://doi.org/10.1016/j.postharvbio.2015.07.021
Published
How to Cite
Issue
Section
Copyright (c) 2024 Agriculture and Environmental Science Academy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.