A review on seed priming to combat climate variability in agriculture
Abstract
Global agriculture faces immense challenges due to climate change, which causes unpredictable weather patterns, decreased agricultural productivity, and decreased food security. Seed priming is critical in combating climate variability because it has emerged as a promising method for improving seed germination and agricultural resilience. This review evaluates the efficiency of several seed priming techniques, including hydro-priming, halo-priming, osmo-priming, bio-priming, chemical priming, and hormone priming. These techniques improve seedling vigor, stress tolerance, and overall crop yield. Seed priming increases germination rates and resistance to biotic and abiotic stresses, such as salinity and drought, while improving agricultural output and disease resistance. Seed priming reduces the demand for chemical pesticides and fertilizers by increasing soil quality and nutrient absorption, which supports sustainable agriculture. This review highlights the potential benefits of seed priming as a practical, affordable, and practical strategy to reduce the negative effects of climatic variability on agriculture. Future studies should focus on developing the best priming
techniques for diverse crop varieties and conditions, as well as examining the combined impacts of various priming strategies. Seed priming will be crucial to preserving food security and agricultural sustainability in the face of ongoing climate change.
Keywords:
Abiotic stress tolerance, Climate variability, Crop resilience, Enhanced germination, Seed germination, Sustainable agricultureDownloads
References
Abraha, B., & Yohannes, G. (2013). The role of seed priming in improving seedling growth of maize (Zea mays L.) under salt stress at field conditions. Agricultural Sciences, 2013.
Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L., & Patil, B. S. (2020). Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports, 10(1), 5037.
Adhikari, B., Dhital, P. R., Ranabhat, S., & Poudel, H. (2021). Effect of seed hydro-priming durations on germination and seedling growth of bitter gourd (Momordica charantia). PLOS ONE, 16(8), e0255258.
https://doi.org/10.1371/journal.pone.0255258
Afzal, I., Basra, S. M. A., Ahmad, N., & Farooq, M. (2005). Optimization of hormonal priming techniques for the alleviation of salinity stress in wheat (Triticum aestivum L.). https://tspace.library.utoronto.ca/handle/1807/5388
Afzal, I., Basra, S. M., Farooq, M., & Nawaz, A. (2006). Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid, and ascorbic acid. International Journal of Agriculture and Biology, 8(1), 23–28.
Agawane, R. B., & Parhe, S. D. (2015). Effect of seed priming on crop growth and seed yield of soybean [Glycine max (L.) Merill]. The Bioscan, 10(1), 265–270.
Akbar, M., Aslam, N., Khalil, T., Akhtar, S., Siddiqi, E. H., & Iqbal, M. S. (2019). Effects of seed priming with plant growth-promoting rhizobacteria on wheat yield and soil properties under contrasting soils. Journal of Plant Nutrition, 42(17), 2080–2091. https://doi.org/10.1080/01904167.2019.1655041
Akladious, S. A., & Abbas, S. M. (2012). Application of Trichoderma harziunum T22 as a biofertilizer supporting maize growth. African Journal of Biotechnology, 11(35), 8672–8683.
Ananthi, M., Selvaraju, P., & Sundaralingam, K. (2014). Effect of bio-priming using bio-control agents on seed germination and seedling vigor in chili ( Capsicum annuum L.) ‘PKM 1.’ The Journal of Horticultural Science and Biotechnology, 89(5), 564–568. https://doi.org/10.1080/14620316.2014.11513121
Antoniou, C., Savvides, A., Christou, A., & Fotopoulos, V. (2016). Unravelling chemical priming machinery in plants: The role of reactive oxygen-nitrogen–sulfur species in abiotic stress tolerance enhancement. Current Opinion in Plant Biology, 33, 101–107.
Arif, M., Jan, M. T., Marwat, K. B., & Khan, M. A. (2008). Seed priming improves the emergence and yield of soybean. Pakistan Journal of Botany, 40(3), 1169–1177.
Armin, M., Asgharipour, M., & Razavi-Omrani, M. (2010). The effect of seed priming on germination and seedling growth of watermelon (Citrullus lanatus). Advances in Environmental Biology, 4(3), 501–505.
Arshad, U., Jabran, M., Ahmed, S., Abbas, A., Jabbar, A., Zahid, M. S., & Ali, M. A. (2022). Seed-Priming: A Novel Approach for Improving Growth Performance and Resistance Against Root-Knot Nematode (Meloidogyne incognita) in Bread Wheat (Triticum aestivum L.). Gesunde Pflanzen, 74(4), 1041–1051. https://doi.org/10.1007/s10343-022-00672-9
Ashraf, M., & Foolad, M. R. (2005). Pre-sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Advances in Agronomy, 88, 223–271.
Ashraf, M., & Rauf, H. (2001). Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: Growth and ion transport at early growth stages. Acta Physiologiae Plantarum, 23(4), 407–414. https://doi.org/10.1007/s11738-001-0050-9
Aydinoglu, F., Kahriman, T. Y., & Balci, H. (2023). Seed bio-priming enhanced salt stress tolerance of maize (Zea mays L.) seedlings by regulating the antioxidant system and miRNA expression. 3 Biotech, 13(11), 378. https://doi.org/10.1007/s13205-023-03802-w
Batool, A., Ziaf, K., & Amjad, M. (2015). Effect of halo-priming on germination and vigor index of cabbage (Brassica oleracea var. Capitata). Journal of Environmental and Agricultural Sciences, 2(7), 1–8.
Beckers, G. J., & Conrath, U. (2007). Priming for stress resistance: From the lab to the field. Current Opinion in Plant Biology, 10(4), 425–431.
Begum, M. M., Sariah, M., Puteh, A. B., Abidin, M. Z., Rahman, M. A., & Siddiqui, Y. (2010). Field performance of bio-primed seeds to suppress Colletotrichum truncatum causing damping-off and seedling stand of soybean. Biological Control, 53(1), 18–23.
Ben Dkhil, B., Issa, A., & Denden, M. (2014). Germination and seedling emergence of primed okra (Abelmoschus esculentus L.) seeds under salt stress and low temperature.
Bhateshwar, D. C., Prabha, D., Jangid, D., & Salman, M. (2020). Effect of seed priming with botanicals on plant growth and seed yield of lentils (Lens culinaris M.). International Journal of Current Microbiology and Applied Sciences, 9(7), 3484–3499.
Bhowmick, M. K. (2018). Seed Priming: A Low-Cost Technology for Resource-Poor Farmers in Improving Pulse Productivity. In A. Rakshit & H. B. Singh (Eds.), Advances in Seed Priming (pp. 187–208). Springer Singapore.
https://doi.org/10.1007/978-981-13-0032-5_11
Bisen, K., Keswani, C., Mishra, S., Saxena, A., Rakshit, A., & Singh, H. B. (2015). Unrealized Potential of Seed Biopriming for Versatile Agriculture. In A. Rakshit, H. B. Singh, & A. Sen (Eds.), Nutrient Use Efficiency: From Basics to Advances (pp. 193–206). Springer India. https://doi.org/10.1007/978-81-322-2169-2_13
Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273.
Chakraborti, S., Bera, K., Sadhukhan, S., & Dutta, P. (2022). Bio-priming of seeds: Plant stress management and its underlying cellular, biochemical and molecular mechanisms. Plant Stress, 3, 100052.
Choudhary, D. K., Johri, B. N., & Prakash, A. (2008). Volatiles as priming agents that initiate plant growth and defence responses. Current Science, 595–604.
Chua, M., Erickson, T. E., Merritt, D. J., Chilton, A. M., Ooi, M. K. J., & Muñoz-Rojas, M. (2020). Bio‐priming seeds with cyanobacteria: Effects on native plant growth and soil properties. Restoration Ecology, 28(S2). https://doi.org/10.1111/rec.13040
Damalas, C. A., Koutroubas, S. D., & Fotiadis, S. (2019). Hydro-priming effects on seed germination and field performance of faba bean in spring sowing. Agriculture, 9(9), 201.
Deshmukh, A. J., Jaiman, R. S., Bambharolia, R. P., & Patil, V. A. (2020). Seed biopriming review. International Journal of Economic Plants, 7(1), 038–043.
Devika, O. S., Singh, S., Sarkar, D., Barnwal, P., Suman, J., & Rakshit, A. (2021a). Seed priming: A potential supplement in integrated resource management under fragile intensive ecosystems. Frontiers in Sustainable Food Systems, 5, 654001.
Devika, O. S., Singh, S., Sarkar, D., Barnwal, P., Suman, J., & Rakshit, A. (2021b). Seed Priming: A Potential Supplement in Integrated Resource Management Under Fragile Intensive Ecosystems. Frontiers in Sustainable Food Systems, 5, 654001. https://doi.org/10.3389/fsufs.2021.654001
Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42(1), 185–209. https://doi.org/10.1146/annurev.phyto.42.040803.140421
El-Mohamedy, R. S. R., Abd Alla, M. A., & Badiaa, R. I. (2006). Soil amendment and seed bio-priming treatments as alternative fungicides for controlling root rot diseases on cowpea plants in Nobaria Province. Research Journal of Agriculture and Biological Sciences , 2(6), 391–398.
El-Sanatawy, A. M., Ash-Shormillesy, S. M. A. I., Qabil, N., Awad, M. F., & Mansour, E. (2021). Seed Halo-Priming Improves Seedling Vigor, Grain Yield, and Water Use Efficiency of Maize under Varying Irrigation Regimes. Water, 13(15), 2115. https://doi.org/10.3390/w13152115
El-Shafey, R. A. S., & Elamawi, R. (2010). Effect of seed priming on infection with white tip nematode (Aphelenchoides besseyi), seed-borne fungi, Rice and yield component in Egypt. Journal of Plant Protection and Pathology, 1(12), 991–1007.
Ermiş, S., Fatih, K., Özden, E., & Demir, I. (2016). Solid matrix priming of cabbage seed lots: Repair of aging and increasing seed quality. Journal of Agricultural Sciences, 22(4), 588–595.
Farooq, M., Usman, M., Nadeem, F., ur Rehman, H., Wahid, A., Basra, S. M., & Siddique, K. H. (2019). Seed priming in field crops: Potential benefits, adoption and challenges. Crop and Pasture Science, 70(9), 731–771.
Feder, M. E., & Krebs, R. A. (1998). Natural and genetic engineering of the heat-shock protein Hsp70 in Drosophila melanogaster: Consequences for thermotolerance. American Zoologist, 38(3), 503–517.
Field, C. B., & Barros, V. R. (2014). Climate change 2014–Impacts, adaptation, and vulnerability: Regional aspects. Cambridge University Press.
Fiodor, A., Ajijah, N., Dziewit, L., & Pranaw, K. (2023). Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Frontiers in Microbiology, 14, 1142966. https://doi.org/10.3389/fmicb.2023.1142966
Fu, Y., Ma, L., Li, J., Hou, D., Zeng, B., Zhang, L., Liu, C., Bi, Q., Tan, J., Yu, X., Bi, J., & Luo, L. (2024). Factors Influencing Seed Dormancy and Germination and Advances in Seed Priming Technology. Plants, 13(10), 1319. https://doi.org/10.3390/plants13101319
Galhaut, L., De Lespinay, A., Walker, D. J., Bernal, M. P., Correal, E., & Lutts, S. (2014). Seed Priming of Trifolium repens L. Improved Germination and Early Seedling Growth on Heavy Metal-Contaminated Soil. Water, Air, & Soil Pollution, 225(4), 1905. https://doi.org/10.1007/s11270-014-1905-1
Garcia, D., Arif, S., Zhao, Y., Zhao, S., Ming, L. C., & Huang, D. (2021). Seed priming technology is a key strategy to increase crop plant production under adverse environmental conditions.
Geetha, N., Sunilkumar, C. R., Bhavya, G., Nandini, B., Abhijith, P., Satapute, P., Shetty, H. S., Govarthanan, M., & Jogaiah, S. (2023). Warhorses in soil bioremediation: Seed biopriming with PGPF secretome to phytostimulate crop health under heavy metal stress. Environmental Research, 216, 114498. https://doi.org/10.1016/j.envres.2022.114498
Ghassemi-Golezani, K., Chadordooz-Jeddi, A., Nasrullahzadeh, S., & Moghaddam, M. (2010). Influence of hydro-priming duration on-field performance of pinto bean (Phaseolus vulgaris L.) cultivars. African Journal of Agricultural Research, 5(9), 893–897.
Goellner, K., & Conrath, U. (2008). Priming: It’s all the world to induced disease resistance. European Journal of Plant Pathology, 121(3), 233–242. https://doi.org/10.1007/s10658-007-9251-4
Hilker, M., Schwachtje, J., Baier, M., Balazadeh, S., Bäurle, I., Geiselhardt, S., Hincha, D. K., Kunze, R., Mueller‐Roeber, B., & Rillig, M. C. (2016). Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 91(4), 1118–1133.
Hosseini, A., & Koocheki, A. (2007). The effect of different priming treatments on germination percent and mean germination time of four varieties of sugar beet. Journal of Agronomic Research, 5(1), 69–76.
Hussain, M., Farooq, M., Basra, S. M., & Ahmad, N. (2006). Influence of seed priming techniques on the seedling establishment, yield and quality of hybrid sunflower. International Journal of Agriculture and Biology, 8(1), 14–18.
Hussian, I., Ahmad, R., Farooq, M., & Wahid, A. (2013). Seed priming improves the performance of poor quality wheat seed. International Journal of Agriculture & Biology, 15(6).
Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38–46.
Islam, R., Mukherjee, A., & Hossin, M. (2012). Effect of osmopriming on rice seed germination and seedling growth. Journal of the Bangladesh Agricultural University, 10(452-2016–35564), 15–20.
Jensen, B., Knudsen, I. M. B., Madsen, M., & Jensen, D. F. (2004). Biopriming of Infected Carrot Seed with an Antagonist, Clonostachys rosea , Selected for Control of Seedborne Alternaria spp. Phytopathology®, 94(6), 551–560. https://doi.org/10.1094/PHYTO.2004.94.6.551
Jisha, K. C., Vijayakumari, K., & Puthur, J. T. (2013). Seed priming for abiotic stress tolerance: An overview. Acta Physiologiae Plantarum, 35(5), 1381–1396. https://doi.org/10.1007/s11738-012-1186-5
Johnson, R., & Puthur, J. T. (2021). Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162, 247–257.
Khan, H., Ayub, C., Pervez, M., Bilal, R., Shahid, M., & Ziaf, K. (2009). Effect of seed priming with NaCI on salinity tolerance of hot pepper (Capsicum annuum L.) at seedling stage. Soil and Environment, 28(1), 81–87.
Kumari, N., Rai, P. K., Bara, B. M., & Singh, I. (2017). Effect of halo priming and hormonal priming on seed germination and seedling vigour in maize (Zea mays L) seeds. Journal of Pharmacognosy and Phytochemistry, 6(4), 27–30.
Lal, S. K., Kumar, S., Sheri, V., Mehta, S., Varakumar, P., Ram, B., Borphukan, B., James, D., Fartyal, D., & Reddy, M. K. (2018). Seed Priming: An Emerging Technology to Impart Abiotic Stress Tolerance in Crop Plants. In A. Rakshit & H. B. Singh (Eds.), Advances in Seed Priming (pp. 41–50). Springer Singapore. https://doi.org/10.1007/978-981-13-0032-5_3
Langeroodi, A. R. S., & Noora, R. (2017). Seed priming improves the germination and field performance of soybean under drought stress. Journal of Animal and Plant Sciences, 27(5), 1611–1620.
Lei, C., Bagavathiannan, M., Wang, H., Sharpe, S. M., Meng, W., & Yu, J. (2021). Osmopriming with Polyethylene Glycol (PEG) for Abiotic Stress Tolerance in Germinating Crop Seeds: A Review. Agronomy, 11(11), 2194. https://doi.org/10.3390/agronomy11112194
Li, N., Lin, B., Wang, H., Li, X., Yang, F., Ding, X., Yan, J., & Chu, Z. (2019). Natural variation in Zm FBL41 confers banded leaf and sheath blight resistance in maize. Nature Genetics, 51(10), 1540–1548.
Llorens, E., González-Hernández, A. I., Scalschi, L., Fernández-Crespo, E., Camañes, G., Vicedo, B., & García-Agustín, P. (2020). Priming mediated stress and cross-stress tolerance in plants: Concepts and opportunities. In Priming-mediated stress and cross-stress tolerance in crop plants (pp. 1–20). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780128178928000015
Loreti, E., van Veen, H., & Perata, P. (2016). Plant responses to flooding stress. Current Opinion in Plant Biology, 33, 64–71.
Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., Quinet, M., & Garnczarska, M. (2016). Seed priming: New comprehensive approaches for an old empirical technique. New Challenges in Seed Biology-Basic and Translational Research Driving Seed Technology, 46(10.5772), 64420.
Madany, M. M., Zinta, G., Abuelsoud, W., Hozzein, W. N., Selim, S., Asard, H., & Abd Elgawad, H. (2020). Hormonal seed-priming improves tomato resistance against broomrape infection. Journal of Plant Physiology, 250, 153184.
Mahmood, A., Turgay, O. C., Farooq, M., & Hayat, R. (2016). Seed biopriming with plant growth promoting rhizobacteria: A review. FEMS Microbiology Ecology, 92(8), fiw112.
Maiti, R. K., Vidyasagar, P., Rajkumar, D., Ramaswamy, A., & Rodriguez, H. G. (2011). Seed priming improves seedling vigor and yield of few vegetable crops. International Journal of Bio-Resource and Stress Management, 2(1), 125–130.
Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V. G., Karthikeyan, A., & Ramalingam, J. (2020a). Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants. International Journal of Molecular Sciences, 21(21), 8258. https://doi.org/10.3390/ijms21218258
Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V. G., Karthikeyan, A., & Ramalingam, J. (2020b). Seed priming: A feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 21(21), 8258.
Maswada, H., Djanaguiraman, M., & Prasad, P. (2018). Seed treatment with nano‐iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. Journal of Agronomy and Crop Science, 204(6), 577–587.
Min, C. W., Lee, S. H., Cheon, Y. E., Han, W. Y., Ko, J. M., Kang, H. W., Kim, Y. C., Agrawal, G. K., Rakwal, R., & Gupta, R. (2017). In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. Journal of Proteomics, 169, 125–135.
Mirmazloum, I., Kiss, A., Erdélyi, É., Ladányi, M., Németh, É. Z., & Radácsi, P. (2020). The Effect of Osmopriming on Seed Germination and Early Seedling Characteristics of Carum carvi L. Agriculture, 10(4), 94. https://doi.org/10.3390/agriculture10040094
Mitra, D., Mondal, R., Khoshru, B., Shadangi, S., Das Mohapatra, P. K., & Panneerselvam, P. (2021). Rhizobacteria mediated seed bio-priming triggers the resistance and plant growth for sustainable crop production. Current Research in Microbial Sciences, 2, 100071. https://doi.org/10.1016/j.crmicr.2021.100071
Moghanibashi, M., Karimmojeni, H., & Niis kneshan, P. (2013). Seed treatment to overcome drought and salt stress during germination of sunflower (Helianthus annuus L.).
Mondal, S., & Bose, B. (2014). An Impact of Seed Priming on Disease Resistance: A Review. In R. N. Kharwar, R. S. Upadhyay, N. K. Dubey, & R. Raghuwanshi (Eds.), Microbial Diversity and Biotechnology in Food Security (pp. 193–203). Springer India. https://doi.org/10.1007/978-81-322-1801-2_16
Mondal, S., & Bose, B. (2019). Impact of micronutrient seed priming on germination, growth, development, nutritional status and yield aspects of plants. Journal of Plant Nutrition, 42(19), 2577–2599. https://doi.org/10.1080/01904167.2019.1655032
Moradi, A., & Younesi, O. (2009). Effects of osmo-and hydro-priming on seed parameters of grain sorghum (Sorghum bicolor L.). Australian Journal of Basic and Applied Sciences, 3(3), 1696–1700.
Mustafa, G., Masood, S., Ahmed, N., Saboor, A., Ahmad, S., Hussain, S., Bilal, M., & Ali, M. A. (2019). Seed Priming for Disease Resistance in Plants. In M. Hasanuzzaman & V. Fotopoulos (Eds.), Priming and Pretreatment of Seeds and Seedlings (pp. 333–362). Springer Singapore. https://doi.org/10.1007/978-981-13-8625-1_16
Mustafa, H. S. B., Mahmood, T., Ullah, A., SHAH, A., BHATTI, A. N., NAEEM, M., & ALI, R. (2017). Role of seed priming to enhance growth and development of crop plants against biotic and abiotic stresses. Bulletin of Biological and Allied Sciences Research, 2017(1), 8–8.
Nakao, Y., Asea, G., Yoshino, M., Kojima, N., Hanada, H., Miyamoto, K., Yabuta, S., Kamioka, R., & Sakagami, J. I. (2018). Development of hydropriming techniques for sowing seeds of upland rice in Uganda. American Journal of Plant Sciences, 9(11), 2170–2182.
Nasri, N., Kaddour, R., Mahmoudi, H., Baatour, O., Bouraoui, N., & Lachaâl, M. (2011). The effect of osmopriming on germination, seedling growth and phosphatase activities of lettuce under saline condition. African Journal of Biotechnology, 10(65), 14366–14372.
Nawaz, A., Amjad, M., Pervez, M. A., & Afzal, I. (2011). Effect of halopriming on germination and seedling vigor of tomato. African Journal of Agricultural Research, 6(15), 3551–3559.
Nawaz, H., Hussain, N., Ahmed, N., & Javaiz, A. (2021). Efficiency of seed bio-priming technique for healthy mungbean productivity under terminal drought stress. Journal of Integrative Agriculture, 20(1), 87–99.
Nawaz, J., Hussain, M., Jabbar, A., Nadeem, G. A., Sajid, M., Subtain, M. U., & Shabbir, I. (2013). Seed priming a technique. International Journal of Agriculture and Crop Sciences, 6(20), 1373.
Naz, F., Gul, H., Hamayun, M., Sayyed, A., Khan, H., & Sherwani, S. (2014). Effect of NaCl stress on Pisum sativum germination and seedling growth with the influence of seed priming with potassium (KCL and KOH). American-Eurasian Journal of Agricultural and Environmental Sciences, 14(11), 1304–1311.
Nazir, M. S., Saad, A., Anjum, Y., & Ahmad, W. (2014). Possibility of seed priming for good germination of cotton seed under salinity stress. Journal of Biology, Agriculture and Healthcare, 4(8), 66–68.
Oliveira, M. C., Osipitan, O. A., Begcy, K., & Werle, R. (2020). Cover crops, hormones and herbicides: Priming an integrated weed management strategy. Plant Science, 301, 110550.
Pandey, R. N. (2017). Seed bio-priming in the management of seed-and soil-borne diseases. Indian Phytopathol, 70(2), 164–168.
Pandita, V. K., Anand, A., Nagarajan, S., Seth, R., & Sinha, S. N. (2010). Solid matrix priming improves seed emergence and crop performance in okra. Seed Science and Technology, 38(3), 665–674.
Paparella, S., Araújo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: State of the art and new perspectives. Plant Cell Reports, 34(8), 1281–1293. https://doi.org/10.1007/s00299-015-1784-y
Paul, S., Dey, S., & Kundu, R. (2022). Seed priming: An emerging tool towards sustainable agriculture. Plant Growth Regulation, 97(2), 215–234. https://doi.org/10.1007/s10725-021-00761-1
Paul, S., & Rakshit, A. (2021). Effect of Seed Bio-priming with Trichoderma viride Strain BHU-2953 for Enhancing Soil Phosphorus Solubilization and Uptake in Soybean (Glycine max). Journal of Soil Science and Plant Nutrition, 21(2), 1041–1052. https://doi.org/10.1007/s42729-021-00420-4
Pérez-Jaramillo, J. E., Mendes, R., & Raaijmakers, J. M. (2016). Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology, 90(6), 635–644. https://doi.org/10.1007/s11103-015-0337-7
Dashtmian, P. F., & Khajeh Hosseini, M. (2014). Improving rice seedling physiological and biochemical processes under low temperature by seed priming with salicylic acid. International Journal of Plant, Animal and Environmental Sciences, 4. http://profdoc.um.ac.ir/paper-abstract-1041779.html
Pradhan, N., Prakash, P., Tiwari, S. K., Manimurugan, C., Sharma, R., & Singh, P. (2014). Osmopriming of tomato genotypes with polyethylene glycol 6000 induces tolerance to salinity stress.
Rahangdale, P., Kumar, A., Kumar, R., Kumar, A., Kumar, A., Kumar, D., Singh, C., Singh, D., Kumar, S., & Bharti, A. K. (2022). Influence of biopriming and organic manures on growth, seed yield and quality of black wheat (Triticum aestivum L.). Journal of Pharmacognosy and Phytochemistry, 11(1), 132–135.
Raj, A. B., & Raj, S. K. (2019). Seed priming: An approach towards agricultural sustainability. Journal of Applied and Natural Science, 11(1), 227–234. https://doi.org/10.31018/jans.v11i1.2010
Rajendra Prasad, S., Kamble, U. R., Sripathy, K. V., Udaya Bhaskar, K., & Singh, D. P. (2016). Seed Bio-priming for Biotic and Abiotic Stress Management. In D. P. Singh, H. B. Singh, & R. Prabha (Eds.), Microbial Inoculants in Sustainable Agricultural Productivity (pp. 211–228). Springer India. https://doi.org/10.1007/978-81-322-2647-5_12
Rakshit, A. (2019). Impact Assessment of Bio Priming Mediated Nutrient Use Efficiency for Climate Resilient Agriculture. In S. Sheraz Mahdi (Ed.), Climate Change and Agriculture in India: Impact and Adaptation (pp. 57–68). Springer International Publishing. https://doi.org/10.1007/978-3-319-90086-5_6
Rakshit, A., Sunita, K., Pal, S., Singh, A., & Singh, H. B. (2015). Bio-priming Mediated Nutrient Use Efficiency of Crop Species. In A. Rakshit, H. B. Singh, & A. Sen (Eds.), Nutrient Use Efficiency: From Basics to Advances (pp. 181–191). Springer India. https://doi.org/10.1007/978-81-322-2169-2_12
Razzaq, A., Mahmood, I., Iqbal, J., Rasheed, A. Q. M., & Ahmad, M. (2013). Enhancing drought tolerance of wheat (Triticum aestivum L.) through chemical priming. Wulfenia Journal, 20(7), 44–58.
Reddy, P. P. (2012). Bio-priming of Seeds. In P. P. Reddy, Recent advances in crop protection (pp. 83–90). Springer India. https://doi.org/10.1007/978-81-322-0723-8_6
Reddy, P. P. (2015). Impacts of Climate Change on Agriculture. In P. P. Reddy, Climate Resilient Agriculture for Ensuring Food Security (pp. 43–90). Springer India. https://doi.org/10.1007/978-81-322-2199-9_4
Rhaman, M. S., Imran, S., Rauf, F., Khatun, M., Baskin, C. C., Murata, Y., & Hasanuzzaman, M. (2020). Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants, 10(1), 37.
Rodrigues, E. P., Rodrigues, L. S., De Oliveira, A. L. M., Baldani, V. L. D., Teixeira, K. R. D. S., Urquiaga, S., & Reis, V. M. (2008). Azospirillum amazonense inoculation: Effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant and Soil, 302(1–2), 249–261. https://doi.org/10.1007/s11104-007-9476-1
Saadat, S., & Homaee, M. (2015). Modeling sorghum response to irrigation water salinity at early growth stage. Agricultural Water Management, 152, 119–124.
Saboor, A., Mustafa, G., Arshad, M., Ahmad, M., Hussain, S., Ahmed, N., Ahmad, S., Shahid, M., & Ali, M. A. (2019). Seed Priming and Metal/Metalloid Stress Tolerance in Plants. In M. Hasanuzzaman & V. Fotopoulos (Eds.), Priming and Pretreatment of Seeds and Seedlings (pp. 287–311). Springer Singapore. https://doi.org/10.1007/978-981-13-8625-1_14
Sako, K., Nguyen, H. M., & Seki, M. (2020). Advances in chemical priming to enhance abiotic stress tolerance in plants. Plant and Cell Physiology, 61(12), 1995–2003.
Sarkar, D., & Rakshit, A. (n.d.). Safeguarding the fragile rice–wheat ecosystem of the Indo-Gangetic Plains through bio-priming and bioaugmentation interventions.
Sarkar, D., Rakshit, A., Al-Turki, A. I., Sayyed, R. Z., & Datta, R. (2021). Connecting bio-priming approach with integrated nutrient management for improved nutrient use efficiency in crop species. Agriculture, 11(4), 372.
Sarkar, R. K. (2012). Seed priming improves agronomic trait performance under flooding and non-flooding conditions in rice with QTL SUB1. Rice Science, 19(4), 286–294.
Shah, Z., Haq, I. U., Rehman, A., Khan, A., & Afzal, M. (2013). Soil amendments and seed priming influence nutrients uptake, soil properties, yield and yield components of wheat ( Triticum aestivum L.) in alkali soils. Soil Science and Plant Nutrition, 59(2), 262–270. https://doi.org/10.1080/00380768.2012.762634
shephali, shephali prakash. (2024). Impact and Assessment of Climate Change on Agricultural Production in India: A Geographical Perspective. International Journal For Multidisciplinary Research, 6(2), 15801. https://doi.org/10.36948/ijfmr.2024.v06i02.15801
Shukla, N., Awasthi, R., Rawat, L., & Kumar, J. (2015). Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Annals of Applied Biology, 166(2), 171–182.
Singh, P., Vaishnav, A., Liu, H., Xiong, C., Singh, H. B., & Singh, B. K. (2023). Seed biopriming for sustainable agriculture and ecosystem restoration. Microbial Biotechnology, 16(12), 2212–2222. https://doi.org/10.1111/1751-7915.14322
Singh, S., Singh, U. B., Malviya, D., Paul, S., Sahu, P. K., Trivedi, M., & Saxena, A. K. (2020). Seed biopriming with microbial inoculant triggers local and systemic defense responses against Rhizoctonia solani causing banded leaf and sheath blight in maize (Zea mays L.). International Journal of Environmental Research and Public Health, 17(4), 1396.
Singh, S., Singh, U. B., Malviya, D., Paul, S., Sahu, P. K., Trivedi, M., Paul, D., & Saxena, A. K. (2020b). Seed Biopriming with Microbial Inoculant Triggers Local and Systemic Defense Responses against Rhizoctonia solani Causing Banded Leaf and Sheath Blight in Maize (Zea mays L.). International Journal of Environmental Research and Public Health, 17(4), Article 4. https://doi.org/10.3390/ijerph17041396
Singh, V. K., Singh, R., Tripathi, S., Devi, R. S., Srivastava, P., Singh, P., Kumar, A., & Bhadouria, R. (2020a). Seed priming: State of the art and new perspectives in the era of climate change. Climate Change and Soil Interactions, 143–170.
Singh, V. K., Singh, R., Tripathi, S., Devi, R. S., Srivastava, P., Singh, P., Kumar, A., & Bhadouria, R. (2020b). Seed priming: State of the art and new perspectives in the era of climate change. Climate Change and Soil Interactions, 143–170.
Skendžić, S., Zovko, M., Živković, I. P., Lešić, V., & Lemić, D. (2021). The impact of climate change on agricultural insect pests. Insects, 12(5), 440.
Slaton, N. A., Wilson, C. E., Ntamatungiro, S., Norman, R. J., & Boothe, D. L. (2001). Evaluation of Zinc Seed Treatments for Rice. Agronomy Journal, 93(1), 152–157. https://doi.org/10.2134/agronj2001.931152x
Sun, Q., Miao, C., Hanel, M., Borthwick, A. G., Duan, Q., Ji, D., & Li, H. (2019). Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environment International, 128, 125–136.
Tabassum, T., Farooq, M., Ahmad, R., Zohaib, A., Wahid, A., & Shahid, M. (2018). Terminal drought and seed priming improves drought tolerance in wheat. Physiology and Molecular Biology of Plants, 24, 845–856.
Tamindžić, G., Ignjatov, M., Miljaković, D., Červenski, J., Milošević, D., Nikolić, Z., & Vasiljević, S. (2023). Seed priming treatments to improve heat stress tolerance of garden pea (Pisum sativum L.). Agriculture, 13(2), 439.
Taylor, A. G., Klein, D. E., & Whitlow, T. H. (1988). SMP: Solid matrix priming of seeds. Scientia Horticulturae, 37(1–2), 1–11.
Thakur, M., Sharma, P., & Anand, A. (2019). Seed Priming-Induced Early Vigor in Crops: An Alternate Strategy for Abiotic Stress Tolerance. In M. Hasanuzzaman & V. Fotopoulos (Eds.), Priming and Pretreatment of Seeds and Seedlings (pp. 163–180). Springer Singapore. https://doi.org/10.1007/978-981-13-8625-1_8
Thapa, S., Adhikari, J., Limbu, A. K., Joshi, A., & Nainabasti, A. (2020). Significance of seed priming in agriculture and for sustainable farming. Tropical Agroecosystems, 1(1), 01–06. https://doi.org/10.26480/taec.01.2020.01.06
Thomashow, M. F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Biology, 50(1), 571–599.
Tiwari, M., & Singh, P. (2021). Plant defense priming: A new tool for sustainable global food security. Agricultural Innovations and Sustainability. Agrobios Research, 133–153.
Ullah, A., Shahzad, B., Tanveer, M., Nadeem, F., Sharma, A., Lee, D. J., & Rehman, A. (2019). Abiotic Stress Tolerance in Plants Through Pre-sowing Seed Treatments with Mineral Elements and Growth Regulators. In M. Hasanuzzaman & V. Fotopoulos (Eds.), Priming and Pretreatment of Seeds and Seedlings (pp. 427–445). Springer Singapore. https://doi.org/10.1007/978-981-13-8625-1_21
Urruty, N., Tailliez-Lefebvre, D., & Huyghe, C. (2016). Stability, robustness, vulnerability and resilience of agricultural systems. A review. Agronomy for Sustainable Development, 36(1), 15. https://doi.org/10.1007/s13593-015-0347-5
Van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36(1), 453–483. https://doi.org/10.1146/annurev.phyto.36.1.453
Varshney, R. K., & Tuberosa, R. (2013). Translational Genomics in Crop Breeding for Biotic Stress Resistance: An Introduction. In R. K. Varshney & R. Tuberosa (Eds.), Translational Genomics for Crop Breeding (1st ed., pp. 1–9). Wiley. https://doi.org/10.1002/9781118728475.ch1
Verma, J., & Srivastava, A. K. (1998). Physiological basis of salt stress resistance in pigeon pea (Cajanus cajan L.)-II. Pre-sowing seed soaking treatment in regulating early seedling metabolism during seed germination. Plant Physiology and Biochemistry -New Delhi, 25, 89–94.
Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., Von Wettstein, D., Franken, P., & Kogel, K.-H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences, 102(38), 13386–13391. https://doi.org/10.1073/pnas.0504423102
Wang, X., Vignjevic, M., Jiang, D., Jacobsen, S., & Wollenweber, B. (2014). Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett. Journal of Experimental Botany, 65(22), 6441–6456.
Xue, G.-P., Sadat, S., Drenth, J., & McIntyre, C. L. (2014). The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. Journal of Experimental Botany, 65(2), 539–557.
Yadav, P. V., Kumari, M., & Ahmed, Z. (2011). Chemical Seed Priming as a Simple Technique to Impart Cold and Salt Stress Tolerance in Capsicum. Journal of Crop Improvement, 25(5), 497–503. https://doi.org/10.1080/15427528.2011.587139
Yadav, P. V., Kumari, M., Meher, L. C., Arif, M., & Ahmed, Z. (2012). Chemical Seed Priming as an Efficient Approach for Developing Cold Tolerance in Jatropha. Journal of Crop Improvement, 26(1), 140–149. https://doi.org/10.1080/15427528.2011.618330
Yadav, R. S., Singh, V., Pal, S., Meena, S. K., Meena, V. S., Sarma, B. K., Singh, H. B., & Rakshit, A. (2018). Seed bio-priming of baby corn emerged as a viable strategy for reducing mineral fertilizer use and increasing productivity. Scientia Horticulturae, 241, 93–99.
Zhang, X., Wang, X., Zhong, J., Zhou, Q., Wang, X., Cai, J., Dai, T., Cao, W., & Jiang, D. (2016). Drought priming induces thermo-tolerance to post-anthesis high-temperature in offspring of winter wheat. Environmental and Experimental Botany, 127, 26–36.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Agriculture and Environmental Science Academy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.