A review on abiotic stress vulnerability of wheat and its management in Terai, Nepal

Bisheshta Gyawali 1 , Sudip Subedi 2 , Mukti Ram Poudel 3

1   Institute of Agriculture and Animal Science, Tribhuvan University Bhairahawa, Rupandehi Nepal
2   Institute of Agriculture and Animal Science, Tribhuvan University Bhairahawa, Rupandehi Nepal
3   Institute of Agriculture and Animal Science, Tribhuvan University Bhairahawa, Rupandehi Nepal

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2024.0903027

doi

Abstract

Wheat being one of the most important crops of Nepal after rice and maize is prone to abiotic stresses like heat and drought stress. Climate change, increasing temperature and decreasing precipitation is found to be the major cause of drought and heat stress, especially making developing countries like Nepal to be most vulnerable to the negative impacts on productivity and sustainability. Abiotic stress imposes devastating changes on morphology, biochemistry and physiological processes of wheat. Loss in seed vigor, decrease in germination rate, poor crop stand and abnormal embryo are common impact seen due to combined Abiotic stress. Though many trial has been performed on effect of heat and drought, there is a need for trial imposing wheat to combined stress environment. This review especially deals with the impacts of Abiotic stress along with management including tolerant varieties such as Bhrikuti, NL1420, BL4669, NL1350 and NL1368 and agronomic techniques like mulching, use of early varieties, early sowing and incorporation of Biochar.

Keywords:

Abiotic stress, Drought stress, Heat stress, Stress vulnerability, Wheat

Downloads

Download data is not yet available.

References

Adhikari, S. (2018). Drought impact and adaptation strategies in the mid-hill farming system of western Nepal. Environments - MDPI, 5(9), 1–12. https://doi.org/10.3390/environments5090101

Ahmad, A., Aslam, Z., Javed, T., Hussain, S., Raza, A., Shabbir, R., Mora-Poblete, F., Saeed, T., Zulfiqar, F., Ali, M. M., Nawaz, M., Rafiq, M., Osman, H. S., Albaqami, M., Ahmed, M. A. A., & Tauseef, M. (2022). Screening of Wheat (Triticum aestivum L.) Genotypes for Drought Tolerance through Agronomic and Physiological Response. Agronomy, 12(2). https://doi.org/10.3390/agronomy12020287

Ahmad, Z., Waraich, E. A., Akhtar, S., Anjum, S., Ahmad, T., Mahboob, W., Bin, O., Hafeez, A., Tapera, T., Labuschagne, M., & Rizwan, M. (2018). Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiologiae Plantarum, April. https://doi.org/10.1007/s11738-018-2651-6

Akter, N., & Rafiqul Islam, M. (2017). Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development, 37(5). https://doi.org/10.1007/s13593-017-0443-9

Amarshettiwar, S. B., & Berad, P. B. (2018). Biochemical and yield responses of wheat genotypes to normal and heat stress condition. Journal of Pharmacognosy and Phytochemistry, 7(1), 2663–2666.

Amirjani, M. R., & Mahdiyeh, M. (2013). Antioxidative and biochemical responses of wheat. 8(4), 291–301.

Arzani, A., & Ashraf, M. (2017). Cultivated Ancient Wheats (Triticum spp.): A Potential Source of Health-Beneficial Food Products. Comprehensive Reviews in Food Science and Food Safety, 16(3), 477–488. https://doi.org/10.1111/1541-4337.12262

Bhandari, R., Gnawali, S., Nyaupane, S., Kharel, S., Poudel, M., & Panth, P. (2021). Effect of Drought & Irrigated Environmental Condition on Yield & Yield Attributing Characteristic of Bread Wheat-a Review. Reviews in Food and Agriculture, 2(2), 59–62. https://doi.org/10.26480/rfna.02.2021.59.62

Comastri, A., Janni, M., Simmonds, J., Uauy, C., Pignone, D., Nguyen, H. T., & Marmiroli, N. (2018). Heat in wheat: exploit reverse genetic techniques to discover new alleles within the triticum durum shsp26 family. Frontiers in Plant Science, 9(September), 1–16. https://doi.org/10.3389/fpls.2018.01337

Devkota, K. P., Devkota, M., Moussadek, R., & Nangia, V. (2023). Genotype × environment × agronomic management interaction to enhance wheat yield in the Mediterranean rainfed environments of Morocco: II. Process based modeling. European Journal of Agronomy, 151(9), 126973. https://doi.org/10.1016/j.eja.2023.126973

Devkota, M., Devkota, K. P., Paudel, G. P., Krupnik, T. J., & McDonald, A. J. (2024). Opportunities to close wheat yield gaps in Nepal’s Terai: Insights from field surveys, on-farm experiments, and simulation modeling. Agricultural Systems, 213(February 2023), 103804. https://doi.org/10.1016/j.agsy.2023.103804

Dhyani, K., Ansari, M. W., Rao, Y. R., Verma, R. S., Shukla, A., & Tuteja, N. (2013). Comparative physiological response of wheat genotypes under terminal heat stress. Plant Signaling and Behavior, 8(6). https://doi.org/10.4161/psb.24564

Fábián, A., Jäger, K., & Barnabás, B. (2008). Effects of drought and combined drought and heat stress on germination ability and seminal root growth of wheat ( Triticum aestivum L ) seedlings. March 2015, 3–6.

Farooq, M., Nawaz, A., Chaudhary, M. A. M., & Rehman, A. (2017). Foliage-applied sodium nitroprusside and hydrogen peroxide improves resistance against terminal drought in bread wheat. Journal of Agronomy and Crop Science, 203(6), 473–482. https://doi.org/10.1111/jac.12215

Fathi, A., & Tari, D. B. (2016). Effect of Drought Stress and its Mechanism in Plants. International Journal of Life Sciences, 10(1), 1–6. https://doi.org/10.3126/ijls.v10i1.14509

Gani, R., Devi, S., Goundar, S., Reddy, E., Saber, F., Cheng, Y.-L., Lee, C.-Y., Huang, Y.-L., Buckner, C. A., Lafrenie, R. M., Dénommée, J. A., Caswell, J. M., Want, D. A., Gan, G. G., Leong, Y. C., Bee, P. C., Chin, E., Teh, A. K. H., Picco, S., Mathijssen, R. H. J. (2016). We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech, 11(tourism), 13. https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics

Gupta, N., Agarwal, V. P., Nathawat, N. S., & Gupta, S. (2013). Effect of short-term heat stress on growth , physiology and antioxidative defence system in wheat seedlings Effect of short-term heat stress on growth , physiology and antioxidative defence system in wheat seedlings. June 2016. https://doi.org/10.1007/s11738-013-1221-1

Hakeem, K. R. (2015). Crop production and global environmental issues. Crop Production and Global Environmental Issues, 1–598. https://doi.org/10.1007/978-3-319-23162-4

Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Alam, M. A., Syed, M. A., Hossain, J., Sarkar, S., Saha, S., Bhadra, P., Shankar, T., Bhatt, R., Chaki, A. K., Sabagh, A. E. L., & Islam, T. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum l.) under the changing climate. Agronomy, 11(2). https://doi.org/10.3390/agronomy11020241

Hulme, M., & Sheard, N. (2019). Climate Change Scenarios for Mesoamerica. Wwf, February, 1–6.

Kandel, M., Bastola, A., Sapkota, P., Chaudhary, O., Dhakal, P., Chalise, P., & Shrestha, J. (2018). Analysis of Genetic Diversity among the Different Wheat (Triticum aestivum L.) Genotypes. Türk Tarım ve Doğa Bilimleri Dergisi, 5(2), 180–185. https://doi.org/10.30910/turkjans.421363

Karki, P., Subedi, E., Acharya, G., Bashyal, M., Dawadee, N., & Bhattarai, S. (2021). A review on the effect of heat stress in wheat (Triticum aestivum L.). Archives of Agriculture and Environmental Science, 6(3), 381–384. https://doi.org/10.26832/24566632.2021.0603018

Khan, M. A. U., Mohammad, F., Khan, F. U., Ahmad, S., Raza, M. A., & Kamal, T. (2020). Comparison among different stability models for yield in bread wheat. Sarhad Journal of Agriculture, 36(1), 282–290. https://doi.org/10.17582/JOURNAL.SJA/2020/36.1.282.290

Krupnik, T. J., Timsina, J., Devkota, K. P., Tripathi, B. P., Karki, T. B., Urfels, A., Gaihre, Y. K., Choudhary, D., Beshir, A. R., Pandey, V. P., Brown, B., Gartaula, H., Shahrin, S., & Ghimire, Y. N. (2021). Agronomic, socio-economic, and environmental challenges and opportunities in Nepal’s cereal-based farming systems. In Advances in Agronomy (1st ed., Vol. 170). Elsevier Inc. https://doi.org/10.1016/bs.agron.2021.06.004

Kumari, V. V., Roy, A., Vijayan, R., Banerjee, P., Verma, V. C., Nalia, A., Pramanik, M., Mukherjee, B., Ghosh, A., Reja, M. H., Chandran, M. A. S., Nath, R., Skalicky, M., Brestic, M., & Hossain, A. (2021). Drought and heat stress in cool-season food legumes in sub-tropical regions: Consequences, adaptation, and mitigation strategies. Plants, 10(6), 1–21. https://doi.org/10.3390/plants10061038

Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6(February), 1–14. https://doi.org/10.3389/fchem.2018.00026

Lu, H., Hu, Y., Wang, C., Liu, W., Ma, G., Han, Q., & Ma, D. (2019). Effects of High Temperature and Drought Stress on the Expression of Gene Encoding Enzymes and the Activity of Key Enzymes Involved in Starch Biosynthesis in Wheat Grains. Frontiers in Plant Science, 10(November), 1–17. https://doi.org/10.3389/fpls.2019.01414

Malakouti, S. M. (2023). Utilizing time series data from 1961 to 2019 recorded around the world and machine learning to create a Global Temperature Change Prediction Model. Case Studies in Chemical and Environmental

Engineering, 7(February), 100312. https://doi.org/10.1016/j.cscee.2023.100312

MoALD. (2023). Statistical Information on Nepalese Agriculture 2078/79 (2021/22). MoALD, 269. https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf

Mondal, S., Singh, R. P., Crossa, J., Huerta-Espino, J., Sharma, I., Chatrath, R., Singh, G. P., Sohu, V. S., Mavi, G. S., Sukaru, V. S. P., Kalappanavarg, I. K., Mishra, V. K., Hussain, M., Gautam, N. R., Uddin, J., Barma, N. C. D., Hakim, A., & Joshi, A. K. (2013). Earliness in wheat: A key to adaptation under terminal and continual high temperature stress in South Asia. Field Crops Research, 151, 19–26. https://doi.org/10.1016/j.fcr.2013.06.015

Nyaupane, S., Poudel, M. R., Panthi, B., Dhakal, A., Paudel, H., & Bhandari, R. (2024). Drought stress effect, tolerance, and management in wheat–a review. Cogent Food and Agriculture, 10(1). https://doi.org/10.1080/23311932.2023.2296094

Pokhrel, D., Raj Pant, K., Raman Upadhyay, S., Pandey, D., Raj Gautam, N., Khatri, N., Prasad Yadav, R., Ram Ghimire, B., Prasad Poudel, R., Prasad Poudel, B., Prasad Paudel, G., Raj Yadav, D., & Basnet, R. (2019). Development of suitable wheat varieties for terminal heat stress environment in Terai region of Nepal. January 2022, 20–21.

Poudel et al. (2020). Evaluation of Wheat Genotypes under Irrigated, Heat Stress and Drought Conditions Corresponding Author*. Journal of Biology and Today’s World, 9(1), 1–003.

Poudel, P. B., Poudel, M. R., & Puri, R. R. (2021). Evaluation of heat stress tolerance in spring wheat (Triticum aestivum L.) genotypes using stress tolerance indices in western region of Nepal. Journal of Agriculture and Food Research, 5, 100179. https://doi.org/10.1016/j.jafr.2021.100179

Sehar, Z., Gautam, H., Masood, A., & Khan, N. A. (2023). Ethylene- and Proline-Dependent Regulation of Antioxidant Enzymes to Mitigate Heat Stress and Boost Photosynthetic Efficacy in Wheat Plants. Journal of Plant Growth Regulation, 42(5), 2683–2697. https://doi.org/10.1007/s00344-022-10737-8

Sehgal, A., Sita, K., Siddique, K. H. M., Kumar, R., Bhogireddy, S., Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V. V., & Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science, 871(November), 1–19. https://doi.org/10.3389/fpls.2018.01705

Upadhyaya, N., & Bhandari, K. (2022). Assessment of different genotypes of wheat under late sowing condition. Heliyon, 8(1), e08726. https://doi.org/10.1016/j.heliyon.2022.e08726

Waraich, E. A., Ahmad, R., Halim, A., & Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants: A review. Journal of Soil Science and Plant Nutrition, 12(2), 221–244. https://doi.org/10.4067/S0718-95162012000200003

Zahra, N., Wahid, A., Bilal, M., Ullah, A., Kadambot, H., Siddique, M., & Farooq, M. (2021). Grain development in wheat under combined heat and drought stress: Plant responses and management. Environmental and Experimental Botany, 188(May), 104517. https://doi.org/10.1016/j.envexpbot.2021.104517

Zhang, X., Wang, Z., Li, Y., Guo, R., Liu, E., Liu, X., Gu, F., Yang, Z., Li, S., Zhong, X., & Mei, X. (2022). Wheat genotypes with higher yield sensitivity to drought overproduced proline and lost minor biomass under severer water stress. Frontiers in Plant Science, 13(November), 1–14. https://doi.org/10.3389/fpls.2022.1035038

Published

2024-09-25

How to Cite

Gyawali, B., Subedi, S., & Poudel, M. R. (2024). A review on abiotic stress vulnerability of wheat and its management in Terai, Nepal. Archives of Agriculture and Environmental Science, 9(3), 606-611. https://doi.org/10.26832/24566632.2024.0903027

Issue

Section

Review Articles