Impacts of submergence stress on rice plants and its adaptation: A review

Dipak Khanal 1 , Babita Bastakoti 2 , Dhurba Banjade 3

1   Department of Soil and Crop Sciences, College of Agriculture & Life Sciences, Texas A&M University, College Station, Texas - 77840, USA
2   Department of Agriculture, Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung - 33600, Nepal
3   Department of Agriculture, Institute of Agriculture and Animal Science, Tribhuvan University, Gauradaha - 57200, Nepal

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2024.0903030

doi

Abstract

The main aim of this review is to convey information in summarized form by compiling and interpreting the major findings of recent studies on the impacts of submergence stress on rice and tolerance mechanisms. Published research papers available in Google Scholar, Web of Science, and Pub Med, mainly by Elsevier and SpringerLink, were critically analyzed and
summarized for the preparation of the manuscript. In rice, plant survival rates, growth, and development are adversely affected by submergence. Major findings documented that submergence alters the soil aeration and creates hypoxic and anoxic conditions, which results in low photosynthetic efficiency and sugar status in rice plants. Compared to a tolerant cultivar, a sensitive cultivar produces more ethylene and causes injury to the plant. Controlled underwater shoot elongation, higher conserved non-structural carbohydrates, and better hormonal regulation, especially ethylene and gibberellin, and abscisic acid, are the primary adaptive mechanisms of tolerant plants in submergence, which helps better recovery at the post-submergence stage, too. The Sub1 gene and the associated QTLs are crucial for the superior performance of tolerant cultivars in submergence. Any agronomic management practices that can reduce ethylene production and enhance the nutrient status of plants can alleviate the severity of submergence. Understanding the intricate relationship between submergence and rice plant response is essential, mainly how submergence affects the rice plant and its tolerance mechanism to develop resilient rice cultivars that can grow in flood-prone regions.

Keywords:

Ethylene, Flooding, Rice, Stress, Submergence

Downloads

Download data is not yet available.

References

Afrin, W., Nafis, M. H., Hossain, M. A., Islam, M. M., & Hossain, M. A. (2018). Responses of rice (Oryza sativa L.) genotypes to different levels of submergence. Comptes Rendus - Biologies, 341(2), 85–96. https://doi.org/10.1016/j.crvi.2018.01.001

Ahmed, F., Rafii, M. Y., Ismail, M. R., Juraimi, A. S., Rahim, H. A., Asfaliza, R., & Latif, M. A. (2013). Waterlogging tolerance of crops: Breeding, mechanism of tolerance, molecular approaches, and future prospects. BioMed Research International, 2013, 1-10. https://doi.org/10.1155/2013/963525

Angaji, S. A., Septiningsih, E. M., Mackill, D. J., & Ismail, A. M. (2010). QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica, 172(2), 159–168. https://doi.org/10.1007/s10681-009-0014-5

Banjade, D., Khanal, D., Shrestha, A., & Shrestha, K. (2023). Effects of Seedling and Plant Spacing on the System of Rice Intensification (SRI) for Spring Rice (Oryza sativa L. Chaite 2). AgroEnvironmental Sustainability, 1(3), 229–235. https://doi.org/10.59983/s2023010304

Bui, L. T., Ella, E. S., Dionisio-Sese, M. L., & Ismail, A. M. (2019). Morpho-Physiological Changes in Roots of Rice Seedling upon Submergence. Rice Science, 26(3), 167–177. https://doi.org/10.1016/j.rsci.2019.04.003

Das, K. K., Sarkar, R. K., & Ismail, A. M. (2005). Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Science, 168(1), 131–136. https://doi.org/10.1016/j.plantsci.2004.07.023

Ella, E. S., & Ismail, A. M. (2006). Seedling nutrient states before submergence affects survival after submergence in rice. Crop Science, 46(4), 1673–1681. https://doi.org/10.2135/cropsci2005.08-0280

Ella, E. S., Kawano, N., Yamauchi, Y., Tanaka, K., & Ismail, A. M. (2003). Blocking ethylene perception enhances flooding tolerance in rice seedlings. Functional Plant Biology, 30(7), 813–819. https://doi.org/10.1071/FP03049

Fukao, T., & Bailey-Serres, J. (2008a). Ethylene-A key regulator of submergence responses in rice. Plant Science, 175(1–2), 43–51. https://doi.org/10.1016/j.plantsci.2007.12.002

Fukao, T., & Bailey-Serres, J. (2008b). Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. PNAS, 105(43), 16814-16819. https://doi.org/10.1073/pnas.0807821105

Fukao, T., Yeung, E., & Bailey-Serres, J. (2011). The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell, 23(1), 412–427. https://doi.org/10.1105/tpc.110.080325

Gautam, P., Lal, B., Raja, R., Baig, M. J., Mohanty, S., Tripathi, R., Shahid, M., Bhattacharyya, P., & Nayak, A. K. (2015). Effect of nutrient application and water turbidity on submergence tolerance of rice (Oryza sativa). Annals of Applied Biology, 166(1), 90–104. https://doi.org/10.1111/aab.12161

Hattori, Y., Nagai, K., Furukawa, S., Song, X. J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., & Ashikari, M. (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 460(7258), 1026–1030. https://doi.org/10.1038/nature08258

Hsu, S. K., & Tung, C. W. (2017). RNA-Seq analysis of diverse rice genotypes to identify the genes controlling coleoptile growth during submerged germination. Frontiers in Plant Science, 8, 762. https://doi.org/10.3389/fpls.2017.00762

Ismail, A. M., Ella, E. S., Vergara, G. V., & Mackill, D. J. (2009). Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Annals of Botany, 103(2), 197–209. https://doi.org/10.1093/aob/mcn211

Kato, Y., Collard, B. C. Y., Septiningsih, E. M., & Ismail, A. M. (2019). Increasing flooding tolerance in rice: Combining tolerance of submergence and of stagnant flooding. Annals of Botany, 124(7), 1199–1209. https://doi.org/10.1093/aob/mcz118

Kawano, N., Ito, O., & Sakagami, J. I. (2009). Morphological and physiological responses of rice seedlings to complete submergence (flash flooding). Annals of Botany, 103(2), 161–169. https://doi.org/10.1093/aob/mcn171

Khanal, D., Bastakoti, B., & Banjade, D. (2024). A Review: Elevated Nighttime Temperature Impacts on Rice. International Journal of Plant & Soil Science, 36(8), 437–446. https://doi.org/10.9734/ijpss/2024/v36i84873

Kumar, A.D.A.K., M., Ghosh, N., Kumar Das Gupta, D., & Gupta, S. (2011). Impeded Carbohydrate Metabolism in Rice Plants under Submergence Stress. Rice Science, 18(2), 116-126. https://doi.org/10.1016/S1672-6308(11)60017-6

Lal, B., Gautam, P., Nayak, A. K., Raja, R., Shahid, M., Tripathi, R., Singh, S., Septiningsih, E. M., & Ismail, A. M. (2018). Agronomic manipulations can enhance the productivity of anaerobic tolerant rice sown in flooded soils in rainfed areas. Field Crops Research, 220, 105–116. https://doi.org/10.1016/j.fcr.2016.08.026

Lasanthi-Kudahettige, R., Magneschi, L., Loreti, E., Gonzali, S., Licausi, F., Novi, G., Beretta, O., Vitulli, F., Alpi, A., & Perata, P. (2007). Transcript profiling of the anoxic rice coleoptile. Plant Physiology, 144(1), 218–231. https://doi.org/10.1104/pp.106.093997

Nagai, K., Kuroha, T., Ayano, M., Kurokawa, Y., Angeles-Shim, R. B., Shim, J. H., Yasui, H., Yoshimura, A., & Ashikari, M. (2012). Two novel QTLs regulate internode elongation in deepwater rice during the early vegetative stage. Breeding Science, 62(2), 178–185. https://doi.org/10.1270/jsbbs.62.178

Pedersen, O., Rich, S. M., & Colmer, T. D. (2009). Surviving floods: Leaf gas films improve O 2 and CO 2 exchange, root aeration, and growth of completely submerged rice. Plant Journal, 58(1), 147–156. https://doi.org/10.1111/j.1365-313X.2008.03769.x

Ranawake, A. L., Amarasinghe, G. S., & Senanayake, J. N. (2014). Submergence tolerance of some modern rice cultivars at seedling and vegetative stages. Journal of Crop and Weed, 10(2), 240-247.

Sakagami, J. I., Joho, Y., & Sone, C. (2013). Complete submergence escape with shoot elongation ability by underwater photosynthesis in African rice, Oryza glaberrima Steud. Field Crops Research, 152, 17–26. https://doi.org/10.1016/j.fcr.2012.12.015

Sarkar, R. K., & Bhattacharjee, B. (2011). Rice Genotypes with SUB1 QTL Differ in Submergence Tolerance, Elongation Ability during Submergence and Re-generation Growth at Re-emergence. Rice, 5(1), 7. https://doi.org/10.1007/s12284-011-9065-z

Septiningsih, E. M., Pamplona, A. M., Sanchez, D. L., Neeraja, C. N., Vergara, G. V., Heuer, S., Ismail, A. M., & Mackill, D. J. (2009). Development of submergence-tolerant rice cultivars: The Sub1 locus and beyond. Annals of Botany, 103(2), 151–160. https://doi.org/10.1093/aob/mcn206

Septiningsih, E. M., Sanchez, D. L., Singh, N., Sendon, P. M. D., Pamplona, A. M., Heuer, S., & Mackill, D. J. (2012). Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theoretical and Applied Genetics, 124(5), 867–874. https://doi.org/10.1007/s00122-011-1751-0

Singh, N., Dang, T. T. M., Vergara, G. V., Pandey, D. M., Sanchez, D., Neeraja, C. N., Septiningsih, E. M., Mendioro, M., Tecson-Mendoza, E. M., Ismail, A. M., Mackill, D. J., & Heuer, S. (2010). Molecular marker survey and expression analyses of the rice submergence-tolerance gene SUB1A. Theoretical and Applied Genetics, 121(8), 1441–1453. https://doi.org/10.1007/s00122-010-1400-z

Singh, S., Mackill, D. J., & Ismail, A. M. (2009). Responses of SUB1 rice introgression lines to submergence in the field: Yield and grain quality. Field Crops Research, 113(1), 12–23. https://doi.org/10.1016/j.fcr.2009.04.003

Singh, S., Mackill, D. J., & Ismail, A. M. (2014). Physiological basis of tolerance to complete submergence in rice involves genetic factors in addition to the SUB1 gene. AoB PLANTS, 6. https://doi.org/10.1093/aobpla/plu060

Toojinda, T., Siangliw, M., Tragoonrung, S., & Vanavichit, A. (2003). Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Annals of Botany, 91(2), 243–253. https://doi.org/10.1093/aob/mcf072

Van Der Straeten, D., Zhou, Z., Prinsen, E., Onckelen, H. A. Van, & Van Montagu, M. C. (2001). A Comparative Molecular-Physiological Study of Submergence Response in Lowland and Deepwater Rice. Plant Physiology, 125(2), 955-968. https://doi.org/10.1104/pp.125.2.955

Winkel, A., Colmer, T. D., Ismail, A. M., & Pedersen, O. (2013). Internal aeration of paddy field rice (Oryza sativa) during complete submergence - importance of light and floodwater O2. New Phytologist, 197(4), 1193–1203.

https://doi.org/10.1111/nph.12048

Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A. M., Bailey-Serres, J., Ronald, P. C., & Mackill, D. J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 442(7103), 705–708. https://doi.org/10.1038/nature04920

Published

2024-09-25

How to Cite

Khanal, D., Bastakoti, B., & Banjade, D. (2024). Impacts of submergence stress on rice plants and its adaptation: A review. Archives of Agriculture and Environmental Science, 9(3), 626-631. https://doi.org/10.26832/24566632.2024.0903030

Issue

Section

Review Articles