Impact and tolerance mechanism of heat stress in wheat (Triticum aestivum L.): A review

Suchi Bhatt 1 , Smirti Sharma 2 , Sashi Bhusan Kumar Yadav 3

1   Institute of Agriculture and Animal Science, Tribhuvan University, Nepal
2   Institute of Agriculture and Animal Science, Tribhuvan University, Nepal
3   Institute of Agriculture and Animal Science, Tribhuvan University, Nepal

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2024.0903031

doi

Abstract

Wheat is one of the major cereal crops preferred by world’s population.  About 55% of world’s population depend on wheat to meet their 20% calorie requirement. Wheat being a winter crop grows best in 15-25 degree Celsius of temperature range. But due to increasing global warming climatic requirement of wheat is not fulfilled and suffer different abiotic stresses such as heat, drought, salinity, cold, excess water etc. Among which heat stress is one of the major abiotic stresses faced by wheat. It has different morphological, biochemical and physiological consequences on wheat for instance poor grain quality, decreased grain number and weight, decreased photosynthesis due to disruption in chlorophyll structure and function, reduced starch content due to poor efficiency of enzyme required in biosynthesis. To cope up with all these impacts of heat stress wheat has developed various tolerance mechanisms such as release of heat shock protein, antioxidant defense mechanism, membrane thermostability, stay green, omics approaches etc. Heat shock protein helps to prevent death of cell, accumulation of denatured protein, refolding of protein, transmission of heat shock responses etc. While omics approaches help in gene profiling, protein identification etc. knowledge about both the effect and tolerance mechanism of heat stress in wheat helps to develop heat tolerant varieties with collaborative effort of plant breeder, physiologist etc. that helps to maintain food security.

Keywords:

Effects, Heat shock protein, Heat stress, Tolerance, Wheat

Downloads

Download data is not yet available.

References

Abdelrahman, M., El-Sayed, M., Jogaiah, S., Burritt, D. J., & Tran, L. S. P. (2017). The “Stay-Green” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Reports, 36(7), 1009–1025. https://doi.org/10.1007/S00299-017-2119-Y

Acharya, G., Dawadee, N., & Bashyal, M. (2021). (PDF) A review on the effect of heat stress in wheat (Triticum aestivum L.).

Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, 196, 67–76. https://doi.org/10.1016/J.PLANTSCI.2012.07.014

Akter, N., & Islam, & M. R. (2017). Heat stress effects and management in wheat. A review. https://doi.org/10.1007/s13593-017-0443-9

Bahadur Poudel, P., & Ram Poudel, M. (2020). Heat Stress Effects and Tolerance in Wheat: A Review Journal of Biology and Today’s World. Journal of Biology of Today’s World, 9(4), 217. https://doi.org/10.35248/2322-3308.20.09.217

Balla, K., Karsai, I., Bónis, P., Kiss, T., Berki, Z., Horváth, Á., Mayer, M., Bencze, S., & Veisz, O. (2019). Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress. PLOS ONE, 14(9), e0222639. https://doi.org/10.1371/JOURNAL.PONE.0222639

Banerjee, A., & Roychoudhury, A. (2018). Small Heat Shock Proteins: Structural Assembly and Functional Responses Against Heat Stress in Plants. Plant Metabolites and Regulation under Environmental Stress, 367–376.

https://doi.org/10.1016/B978-0-12-812689-9.00019-4

Bashyal, P., Pandey, S., Tharu, B., Gurung, P., & Koirala, R. (2021). Effects of Terminal Heat Stress and Their Responsive Mechanisms in Elite Wheat Genotypes: A Review. Plant Physiology and Soil Chemistry, 1(2), 35–40.

https://doi.org/10.26480/ppsc.02.2021.35.40

Belko, N., Zaman-Allah, M., Diop, N. N., Cisse, N., Zombre, G., Ehlers, J. D., & Vadez, V. (2013). Restriction of transpiration rate under high vapour pressure deficit and non-limiting water conditions is important for terminal drought tolerance in cowpea. Plant Biology, 15(2), 304–316. https://doi.org/10.1111/J.1438-8677.2012.00642.X

Bhattarai, R. P., Ojha, B. R., Bahadur Thapa, D., Kharel, R., Ojha, A., & Sapkota, M. (2017). Evaluation of Elite Spring Wheat (Triticum aestivum L.) Genotypes for Yield and Yield Attributing Traits under Irrigated Condition. International Journal of Applied Science and Biotechnology, 5(2), 194–202. https://doi.org/10.3126/ijasbt.v5i2.17615

Bimal Roka, M., Himani, C., & Mukti ram, P. (2022). Heat stress effects and tolerance mechanism in wheat: A Review. www.agriwaysjournal.com

Caverzan, A., Casassola, A., & Brammer, S. P. (2016). Antioxidant responses of wheat plants under stress. Genetics and Molecular Biology, 39(1), 1–6. https://doi.org/10.1590/1678-4685-GMB-2015-0109

Chauhan, H., Khurana, N., Tyagi, A. K., Khurana, J. P., & Khurana, P. (2011). Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Molecular Biology, 75(1), 35–51. https://doi.org/10.1007/S11103-010-9702-8

Chaves, M. S., Martinelli, J. A., Wesp-Guterres, C., Graichen, F. A. S., Brammer, S. P., Scagliusi, S. M., da Silva, P. R., Wiethölter, P., Torres, G. A. M., Lau, E. Y.,

Consoli, L., & Chaves, A. L. S. (2013). The importance for food security of maintaining rust resistance in wheat. Food Security, 5(2), 157–176. https://doi.org/10.1007/S12571-013-0248-X

Chen, Y., Zhang, Z., Tao, F., Palosuo, T., & Rötter, R. P. (2018). Impacts of heat stress on leaf area index and growth duration of winter wheat in the North China Plain. Field Crops Research, 222, 230–237. https://doi.org/10.1016/J.FCR.2017.06.007

Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2(DEC), 121942. https://doi.org/10.3389/FENVS.2014.00053/BIBTEX

Datta Bhatta, R., Amgain, L. P., Subedi, R., & Kandel, B. P. (2020). Assessment of productivity and profitabilty of wheat using Nutrient Expert ®-Wheat model in Jhapa district of Nepal. https://doi.org/10.1016/j.heliyon.2020.e04144

Deva, C. R., Urban, M. O., Challinor, A. J., Falloon, P., & Svitákova, L. (2020). Enhanced Leaf Cooling Is a Pathway to Heat Tolerance in Common Bean. Frontiers in Plant Science, 11, 493376. https://doi.org/10.3389/FPLS.2020.00019/BIBTEX

Dhakal, A., Adhikari, C., Manandhar, D., Bhattarai, S., & Shrestha, S. (2021). Effect of Abiotic Stress In Wheat: A Review. Reviews In Food and Agriculture, 2(2), 69–72. https://doi.org/10.26480/rfna.02.2021.69.72

Djanaguiraman, M., Narayanan, S., Erdayani, E., & Prasad, P. V. V. (2020). Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biology, 20(1), 1–12. https://doi.org/10.1186/S12870-020-02479-0/FIGURES/5

Dwivedi, S. K., Kumar, G., Basu, S., Kumar, S., Rao, K. K., & Choudhary, A. K. (2018). Physiological and molecular aspects of heat tolerance in wheat. SABRAO Journal of Breeding and Genetics, 50(2), 192–216.

Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. M. (2011). Heat Stress in Wheat during Reproductive and Grain-Filling Phases. Critical Reviews in Plant Sciences, 30(6), 491–507. https://doi.org/10.1080/07352689.2011.615687

Feng, B., Liu, P., Li, G., Dong, S. T., Wang, F. H., Kong, L. A., & Zhang, J. W. (2014). Effect of Heat Stress on the Photosynthetic Characteristics in Flag Leaves at the Grain-Filling Stage of Different Heat-Resistant Winter Wheat Varieties. Journal of Agronomy and Crop Science, 200(2), 143–155. https://doi.org/10.1111/JAC.12045

Grote, U., Fasse, A., Nguyen, T. T., & Erenstein, O. (2021). Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Frontiers in Sustainable Food Systems, 4, 617009. https://doi.org/10.3389/FSUFS.2020.617009/BIBTEX

Guarin, J. R., Martre, P., Ewert, F., Webber, H., Dueri, S., Calderini, D., Reynolds, M., Molero, G., Miralles, D., Garcia, G., Slafer, G., Giunta, F., Pequeno, D. N. L., Stella, T., Ahmed, M., Alderman, P. D., Basso, B., Berger, A. G., Bindi, M., Asseng, S. (2022). Evidence for increasing global wheat yield potential. Environmental Research Letters, 17(12), 124045. https://doi.org/10.1088/1748-9326/ACA77C

Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013a). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684. https://doi.org/10.3390/ijms14059643

Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013b). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684. https://doi.org/10.3390/IJMS14059643

Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Barbanti, L., Aamer, M., Iqbal, M. M., Nawaz, M., Mahmood, A., Ali, A., & Aslam, M. T. (2021). Heat stress in cultivated plants: nature, impact, mechanisms, and mitigation

strategies—a review. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 155(2), 211–234. https://doi.org/10.1080/11263504.2020.1727987

Haworth, M., Marino, G., Brunetti, C., Killi, D., De Carlo, A., & Centritto, M. (2018). The Impact of Heat Stress and Water Deficit on the Photosynthetic and Stomatal Physiology of Olive (Olea europaea L.)—A Case Study of the 2017 Heat Wave. Plants 2018, Vol. 7, Page 76, 7(4), 76. https://doi.org/10.3390/PLANTS7040076

Higashi, Y., & Saito, K. (2019). Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. Progress in Lipid Research, 75, 100990. https://doi.org/10.1016/J.PLIPRES.2019.100990

Huang, B., Rachmilevitch, S., & Xu, J. (2012). Root carbon and protein metabolism associated with heat tolerance. Journal of Experimental Botany, 63(9), 3455–3465. https://doi.org/10.1093/jxb/ers003

Iqbal, M. J., Shams, N., Fatima, K., Iqbal, M. J., Shams, N., & Fatima, K. (2022). Nutritional Quality of Wheat. Wheat. https://doi.org/10.5772/INTECHOPEN.104659

Iqbal, M., Raja, N. I., Mashwani, Z. U. R., Hussain, M., Ejaz, M., & Yasmeen, F. (2019). Effect of Silver Nanoparticles on Growth of Wheat Under Heat Stress. Iranian Journal of Science and Technology, Transaction A: Science, 43(2), 387–395. https://doi.org/10.1007/S40995-017-0417-4/METRICS

Iqbal, M., Raja, N. I., Yasmeen, F., Hussain, M., Ejaz, M., & Shah, M. A. (2017). Impacts of Heat Stress on Wheat: A Critical Review. Advances in Crop Science and Technology, 5(1), 1–9. https://doi.org/10.4172/2329-8863.1000251

Kajla, M., Yadav, V. K., Khokhar, J., Singh, S., Chhokar, R. S., Meena, R. P., & Sharma, R. K. (2015). Increase in wheat production through management of abiotic stresses: A review. Journal of Applied and Natural Science, 7(2), 1070–1080. https://doi.org/10.31018/JANS.V7I2.733

Karki, P., Subedi, E., Acharya, G., Bashyal, M., Dawadee, N., & Bhattarai, S. (2021a). A review on the effect of heat stress in wheat (Triticum aestivum L.). Archives of Agriculture and Environmental Science, 6(3), 381–384.

https://doi.org/10.26832/24566632.2021.0603018

Kaushal, N., Bhandari, K., Siddique, K. H. M., & Nayyar, H. (2016). Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food & Agriculture, 2(1), 1134380. https://doi.org/10.1080/23311932.2015.1134380

Khan, A., Ahmad, M., Ahmed, M., & Iftikhar Hussain, M. (2020). Rising Atmospheric Temperature Impact on Wheat and Thermotolerance Strategies. Plants, 10(1), 43. https://doi.org/10.3390/PLANTS10010043

Khan, A., Ahmad, M., Kausar, M., Shah, N., & Ahmed, M. (2020). Performance of Wheat Genotypes for Morpho-Physiological Traits Using Multivariate Analysis Under Terminal Heat Stress. Pakistan Journal of Botany, 52(6), 1981–1988. https://doi.org/10.30848/PJB2020-6(30)

Kumar, R. R., Goswami, S., Singh, K., Dubey, K., Singh, S., Sharma, R., Verma, N., Kala, Y. K., Rai, G. K., Grover, M., Mishra, D. C., Singh, B., Pathak, H., Chinnusamy, V., Rai, A., & Praveen, S. (2016). Identification of putative RuBisCo activase (TaRca1)–The catalytic chaperone regulating carbon assimilatory pathway in wheat (triticum aestivum) under the heat stress. Frontiers in Plant Science, 7(JULY2016). https://doi.org/10.3389/FPLS.2016.00986/FULL

Lai, C.-H., & He, J. (2016). Physiological Performances of Temperate Vegetables with Response to Chronic and Acute Heat Stress. American Journal of Plant Sciences, 07(14), 2055–2071. https://doi.org/10.4236/AJPS.2016.714185

Lal, M. K., Tiwari, R. K., Gahlaut, V., Mangal, V., Kumar, A., Singh, M. P., Paul, V., Kumar, S., Singh, B., & Zinta, G. (2021). Physiological and molecular insights on wheat responses to heat stress. Plant Cell Reports, 41(3), 501–518.

https://doi.org/10.1007/S00299-021-02784-4

Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, 311598. https://doi.org/10.3389/FCHEM.2018.00026/BIBTEX

Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature 2016 529:7584, 529(7584), 84–87. https://doi.org/10.1038/nature16467

Li, H., Edin, F., Hayashi, H., Gudjonsson, O., Danckwardt-Lillieström, N., Engqvist, H., Rask-Andersen, H., & Xia, W. (2017). Guided growth of auditory neurons: Bioactive particles towards gapless neural – electrode interface. Biomaterials, 122, 1–9. https://doi.org/10.1016/J.BIOMATERIALS.2016.12.020

Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D. B., Martre, P., Ruane, A. C., Wallach, D., Jones, J. W., Rosenzweig, C., Aggarwal, P. K., Alderman, P. D., Anothai, J., Basso, B., Biernath, C., Cammarano, D., Challinor, A., Deryng, D., & Zhu, Y. (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 6(12), 1130–1136. https://doi.org/10.1038/nclimate3115

Mazzeo, M. F., Cacace, G., Iovieno, P., Massarelli, I., Grillo, S., & Siciliano, R. A. (2018). Response mechanisms induced by exposure to high temperature in anthers from thermo-tolerant and thermo-sensitive tomato plants: A proteomic perspective. PLOS ONE, 13(7), e0201027. https://doi.org/10.1371/JOURNAL.PONE.0201027

Medina, S., Vicente, R., Nieto-Taladriz, M. T., Aparicio, N., Chairi, F., Vergara-Diaz, O., & Araus, J. L. (2019). The plant-transpiration response to vapor pressure deficit (VPD) in durum wheat is associated with differential yield performance and specific expression of genes involved in primary metabolism and water transport. Frontiers in Plant Science, 9, 392038. https://doi.org/10.3389/FPLS.2018.01994/BIBTEX

Mu, Q., Zhang, W., Zhang, Y., Yan, H., Liu, K., Matsui, T., Tian, X., & Yang, P. (2017). iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature. Inhttps://doi.org/10.3390/IJMS18091811ternational Journal of Molecular Sciences, 18(9), 1811.

Munjal, R., & Rana, R. (2003). Evaluation of Physiological traits in wheat (Triticum aestivum L.) for terminal high temperature tolerance Proceedings of the Tenth International Wheat Genetics Symposium, Poestum, Italy, Class | Request PDF. Proceedings of the Tenth International Wheat Genetics Symposium.

Narayanan, S. (2018). Effects of high temperature stress and traits associated with tolerance in wheat. Open Access Journal of Science, 2(3). https://doi.org/10.15406/OAJS.2018.02.00067

Netsvetaev, V. P., Kozelets, Y. O., Ashcheulova, A. P., Nerubenko, O. E., & Akinshina, O. V. (2020). Parameters of grain quality in winter common wheat and the effect of hereditary factors associated with the endosperm carbohydrate complex. Russian Journal of Genetics, 56(12), 1435–1444. https://doi.org/10.1134/S102279542012011X/METRICS

Ni, Z., Li, H., Zhao, Y., Peng, H., Hu, Z., Xin, M., & Sun, Q. (2017). Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. https://doi.org/10.1016/j.cj.2017.09.005

Nyaupane, S., Bhandari, R., & Poudel, R. (2023). Evaluation of wheat genotypes using stress tolerance indices under irrigated and drought at late sown condition. Journal of Innovative Agriculture. https://doi.org/10.37446/jinagri/rsa/10.3.2023.37-47

Orlovsky, M., Tymoshchuk, T., Konopchuk, O., Voitsehivsky, V., & Didur, I. (2019). The effect of growth technology features on the productivity of winter wheat in the context of Ukrainian Western Polissia. Scientific Horizons, 11, 77–85. https://doi.org/10.33249/2663-2144-2019-84-11-77-85

Pandey, G. C., Mehta, G., Sharma, P., & Sharma, V. (2019). View of Terminal heat tolerance in wheat: An overview. Journal of Cereal Research. https://epubs.icar.org.in/index.php/JWR/article/view/79252/36743

Park, C. J., & Seo, Y. S. (2015). Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. The Plant Pathology Journal, 31(4), 323–333. https://doi.org/10.5423/PPJ.RW.08.2015.0150

Paudel, S., Pokharel, N. P., Adhikari, S., & Poudel, S. (2021). Food and Agri Economics Review (FAER) Heat and Drought Stress Effect in Wheat Genotypes: A Review. https://doi.org/10.26480/faer.02.2021.77.79

Pollastri, S., Sukiran, N. A., Jacobs, B. C. I. C., & Knight, M. R. (2021). Chloroplast calcium signalling regulates thermomemory. Journal of Plant Physiology, 264, 153470. https://doi.org/10.1016/J.JPLPH.2021.153470

Poudel, M., Ghimire, S., … M. P.-J. B. T., & 2020, undefined. (2020). Evaluation of wheat genotypes under irrigated, heat stress and drought conditions. Researchgate.NetMR Poudel, S Ghimire, MP Pandey, KH Dhakal, DB Thapa, HK PoudelJ Biol Today’s World, 2020. researchgate.Net.

Poudel, P. B. (2020). Heat Stress Effects and Tolerance in Wheat: A Review Journal of Biology and Today’s World. Journal of Biology and Today's World, 9(4), 217. https://doi.org/10.35248/2322-3308.20.09.217

Prasad, P. V. V., & Djanaguiraman, M. (2014). Response of floret fertility and individual grain weight of wheat to high temperature stress: Sensitive stages and thresholds for temperature and duration. Functional Plant Biology, 41(12), 1261–1269. https://doi.org/10.1071/FP14061

Qaseem, M. F., Qureshi, R., Shaheen, H., Pakistan, R., & Rawalpindi, P. (n.d.). Effects of Pre-Anthesis Drought, Heat and Their Combination on the Growth, Yield and Physiology of diverse Wheat (Triticum aestivum L.) Genotypes Varying in Sensitivity to Heat and drought stress. https://doi.org/10.1038/s41598-019-43477-z

Rahman, M. A., Chikushi, J., Yoshida, S., & Karim, A. J. M. S. (2009). GROWTH AND YIELD Components of Wheat Genotypes Exposed to High Temperature Stress Under Control Environment.

Rangan, P., Furtado, A., & Henry, R. (2020). Transcriptome profiling of wheat genotypes under heat stress during grain-filling. Journal of Cereal Science, 91, 102895. https://doi.org/10.1016/J.JCS.2019.102895

Razzaq, A., Sadia, B., Raza, A., Hameed, M. K., & Saleem, F. (2019). Metabolomics: A Way Forward for Crop Improvement. Metabolites, 9(12), 303. https://doi.org/10.3390/METABO9120303

Rebecca Lindsey, B., Dahlman, L., & Jessica Blunden, B. (2024). Climate Change: Global Temperature. 18. http://www.climate.gov/media/15819

Riaz, M. W., Yang, L., Yousaf, M. I., Sami, A., Mei, X. D., Shah, L., Rehman, S., Xue, L., Si, H., & Ma, C. (2021). Effects of Heat Stress on Growth, Physiology of Plants, Yield and Grain Quality of Different Spring Wheat (Triticum aestivum L.) Genotypes. Sustainability, 13(5), 2972. https://doi.org/10.3390/SU13052972

Sah, N., & Sherpa, D. (2021). Environmental Contaminants Reviews (ECR) 4(2) (2021) 43-48 Environmental Contaminants Reviews (ECR) Tolerance Mechanism Against Impact of Heat Stress on Wheat: A Review. Tolerance Mechanism Against Impact of Heat Stress on Wheat: A Review. Environmental Contaminants Reviews, 4(2), 43–48. https://doi.org/10.26480/ecr.02.2021.43.48

Sarkar, S., Aminul Islam, A. K. M., Barma, N. C. D., & Ahmed, J. U. (2021). Tolerance mechanisms for breeding wheat against heat stress: A review. https://doi.org/10.1016/j.sajb.2021.01.003

Sarkar, S., Islam, A. K. M. A., Barma, N. C. D., & Ahmed, J. U. (2021). Tolerance mechanisms for breeding wheat against heat stress: A review. South African Journal of Botany, 138, 262–277. https://doi.org/10.1016/j.sajb.2021.01.003

Sattar, A., Sher, A., Ijaz, M., Ul-Allah, S., Rizwan, M. S., Hussain, M., Jabran, K., & Cheema, M. A. (2020). Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLOS ONE, 15(5), e0232974. https://doi.org/10.1371/JOURNAL.PONE.0232974

Savchenko, G. E., Klyuchareva, E. A., Abramchik, L. M., & Serdyuchenko, E. V. (2002). Effect of periodic heat shock on the inner membrane system of etioplasts. Russian Journal of Plant Physiology, 49(3), 349–359. https://doi.org/10.1023/A:1015592902659/METRICS

Sharma, D., Singh, R., Tiwari, R., Kumar, R., & Gupta, V. K. (2019). Wheat Responses and Tolerance to Terminal Heat Stress: A Review. Wheat Production in Changing Environments, 149–173. https://doi.org/10.1007/978-981-13-6883-7_7

Sinha, S. K., & Kumar, K. R. R. (2022). Heat Stress in Wheat: Impact and Management Strategies Towards Climate Resilience. Advances in Science, Technology and Innovation, 199–214. https://doi.org/10.1007/978-3-030-95365-2_13/COVER

Slimen, I. B., Najar, T., Ghram, A., Dabbebi, H., Ben Mrad, M., & Abdrabbah, M. (2014). Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. International Journal of Hyperthermia, 30(7), 513–523. https://doi.org/10.3109/02656736.2014.971446

Sowell, A., & Swearingen, B. (2023). Wheat Outlook: June 2023.

Statistical-Information-on-Nepalese-Agriculture-2078-79-2021-22. (n.d.).

Ul Haq, S., Khan, A., Ali, M., Khattak, A. M., Gai, W.-X., Zhang, H.-X., Wei, A.-M., & Gong, Z.-H. (2019). Molecular Sciences Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20215321

Urban, O., Hlaváčová, M., Klem, K., Novotná, K., Rapantová, B., Smutná, P., Horáková, V., Hlavinka, P., Škarpa, P., & Trnka, M. (2018). Combined effects of drought and high temperature on photosynthetic characteristics in four winter wheat genotypes. Field Crops Research, 223, 137–149. https://doi.org/10.1016/J.FCR.2018.02.029

USDA. (2020). https://fas.usda.gov/data/2020-us-agricultural-exports

USDA. (2021). https://www.usda.gov/oce/commodity/wasde

Varshney, R. K., Singh, V. K., Kumar, A., Powell, W., & Sorrells, M. E. (2018). Can genomics deliver climate-change ready crops? Current Opinion in Plant Biology, 45, 205–211. https://doi.org/10.1016/j.pbi.2018.03.007

Wang, J., Qin, Q., Pan, J., Sun, L., Sun, Y., Xue, Y., & Song, K. (2019). Transcriptome analysis in roots and leaves of wheat seedlings in response to low-phosphorus stress. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-56451-6

World Food and Agriculture – Statistical Yearbook 2023. (2023). In World Food and Agriculture – Statistical Yearbook 2023. FAO. https://doi.org/10.4060/cc8166en

Wu, J., Gao, T., Hu, J., Zhao, L., Yu, C., & Ma, F. (2022). Research advances in function and regulation mechanisms of plant small heat shock proteins (sHSPs) under environmental stresses. Science of The Total Environment, 825, 154054. https://doi.org/10.1016/J.SCITOTENV.2022.154054

Xu, Z. S., Li, Z. Y., Chen, Y., Chen, M., Li, L. C., & Ma, Y. Z. (2012). Heat Shock Protein 90 in Plants: Molecular Mechanisms and Roles in Stress Responses. International Journal of Molecular Sciences, 13(12), 15706–15723.

https://doi.org/10.3390/IJMS131215706

Yadav, M. R., Choudhary, M., Singh, J., Lal, M. K., Jha, P. K., Udawat, P., Gupta, N. K., Rajput, V. D., Garg, N. K., Maheshwari, C., Hasan, M., Gupta, S., Jatwa, T. K., Kumar, R., Yadav, A. K., & Vara Prasad, P. V. (2022). Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. International Journal of Molecular Sciences, 23(5), 2838. https://doi.org/10.3390/IJMS23052838

Zahra, N., Hafeez, M. B., Ghaffar, A., Kausar, A., Zeidi, M. Al, Siddique, K. H. M., & Farooq, M. (2023). Plant photosynthesis under heat stress: Effects and management. Environmental and Experimental Botany, 206, 105178.

https://doi.org/10.1016/J.ENVEXPBOT.2022.105178

Zhang, H. Y., Lei, G., Zhou, H. W., He, C., Liao, J. L., & Huang, Y. J. (2017). Quantitative iTRAQ-based proteomic analysis of rice grains to assess high night temperature stress. PROTEOMICS, 17(5), 1600365. https://doi.org/10.1002/PMIC.201600365

Zhang, Y., Pan, J., Huang, X., Guo, D., Lou, H., Hou, Z., Su, M., Liang, R., Xie, C., You, M., & Li, B. (2017). Differential effects of a post-anthesis heat stress on wheat (Triticum aestivum L.) grain proteome determined by iTRAQ. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-03860-0

Zhao, F., Zhang, D., Zhao, Y., Wang, W., Yang, H., Ta, F., Li, C., & Hu, X. (2016). The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat, and combined both stresses. Frontiers in Plant Science, 7(OCTOBER2016), 205980. https://doi.org/10.3389/FPLS.2016.01471/BIBTEX

Zhou, R., Jiang, F., Niu, L., Song, X., Yu, L., Yang, Y., & Wu, Z. (2022). Increase Crop Resilience to Heat Stress Using Omic Strategies. Frontiers in Plant Science, 13, 891861. https://doi.org/10.3389/FPLS.2022.891861/BIBTEX

Published

2024-09-25

How to Cite

Bhatt, S., Sharma, S., & Yadav, S. B. K. (2024). Impact and tolerance mechanism of heat stress in wheat (Triticum aestivum L.): A review. Archives of Agriculture and Environmental Science, 9(3), 632-640. https://doi.org/10.26832/24566632.2024.0903031

Issue

Section

Review Articles