A review on co-composting of biosolids and its use in crops cultivation for agriculture sustainability
Abstract
Generation and disposal of biosolids (solid and semisolid materials left after the wastewater treatment) has becoming a challenge globally. A large number of objectionable components like heavy metals, pesticides, detergents and pathogens restricts the direct application of biosolids in the cultivation of agricultural crops as it contaminates the soil as well as the cultivated crops and causes health issues. Co-composting of biosolids can be a viable option to utilize the biosolids in a definite proportion along with different types of biodegradable materials (co-substrate) such as, kitchen waste, agricultural residues, forestry waste and waste from the animal husbandry etc. Co-composting improves the nutrients status of the composted biosolids and reduce the risk of accumulation of toxic heavy metals and pathogens in the soil and cultivated crops. The application of biosolids compost in to the soils significantly improve the physical structure, nutrients composition and microbial profile of the soils and subsequently enhance the crops productivity. It also reduces the risk of contamination of the soils and cultivated agricultural crops in comparison to the direct use of biosolids in soil amendment. In this paper we discussed the use of biosolids in agriculture, co-composting of biosolids with different co-substrates and their application in the cultivation of different agricultural crops for sustainable agriculture production.
Keywords:
Contamination, Health risk, Heavy metals, Pathogens, SDGsDownloads
References
Adelodun, B., Kumar, P., Odey, G., Ajibade, F. O., Ibrahim, R. G., Alamri, S. A. M., Alrumman, S.A., Eid, E.M., Kumar, V., et al. (2022). A safe haven of SARS-CoV-2 in the environment: prevalence and potential transmission risks in the effluent, sludge, and biosolids. Geoscience Frontiers, 13(6), 101373.
https://doi.org/10.1016/j.gsf.2022.101373
Breda, C. C., Soares, M. B., Tavanti, R. F. R., Viana, D. G., Freddi, O. d. S., Piedade, A. R., Mahl, D., Traballi, R. C., & Guerrini, I. A. (2020). Successive sewage sludge fertilization: Recycling for sustainable agriculture. Waste Management, 109, 38–50. https://doi.org/10.1016/j.wasman.2020.04.045
Buta, M., Hubeny, J., Zieli´nski, W., Harnisz, M., & Korzeniewska, E. (2021). Sewage sludge in agriculture – the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops – a review. Ecotoxicology and Environmental Safety, 214, 112070.
https://doi.org/10.1016/j.ecoenv.2021.112070
Chagas, J. K. M., Figueiredo, C. C. d., Paz-Ferreiro, J. (2021). Sewage sludge biochars effects on corn response and nutrition and on soil properties in a 5-yr field experiment. Geoderma, 401, 115323. https://doi.org/10.1016/j.geoderma.2021.115323
Chopra, A. K., Sharma, A. K., & Kumar, V. (2011). Overview of Electrolytic treatment: An alternative technology for purification of wastewater. Archives of Applied Science Research, 3(5), 191-206
Cristina, G., Camelin, E., Pugliese, M., Tommasi, T., & Fino, D. (2019). Evaluation of anaerobic digestates from sewage sludge as a potential solution for improvement of soil fertility. Waste Management, 99, 122–134. https://doi.org/10.1016/j.wasman.2019.08.018
Černe, M., Palčić, I., Major, N., Pasković, I., Perković, J., Užila, Z., & Ban, D. (2021). Effect of sewage sludge derived compost or biochar amendment on the phytoaccumulation of potentially toxic elements and radionuclides by Chinese cabbage. Journal of Environmental Management, 293, 112955.
https://doi.org/10.1016/j.jenvman.2021.112955
Dad, K., Wahid, A., Khan, A. A., Anwar, A., Ali, M., Sarwar, N., Ali, S., Ahmad, A., Ahmad, M., Khan, K. A., Ansari, M. J., Gulshan, A.B., Mohammed, A.A. (2019). Nutritional status of different biosolids and their impact on various growth parameters of wheat (Triticum aestivum L.). Saudi Journal of Biological Sciences, 26, 1423–1428. https://doi.org/10.1016/j.sjbs.2018.09.001
Elmi, A., Al-Khaldy, A., & AlOlayan, M. (2019). Sewage sludge land application: Balancing act between agronomic benefits and environmental concerns. Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2019.119512
EPA (2023). Basic Information about Biosolids. Retrieved from https://www.epa.gov/biosolids/basic-information-about-biosolids.
Ghorbani, M., Konvalina, P., Walkiewicz, A., Neugschwandtner, R.W., Kopecký, M., Zamanian, K., Chen, W.H., Bucur, D. (2022). Feasibility of biochar derived from sewage sludge to promote sustainable agriculture and mitigate GHG emissions—A review. International Journal of Environmental Research and Public Health, 19, 12983. https://doi.org/10.3390/ijerph191912983
González, D., Colón, J., Gabriel, D., Sánchez, A. (2019). The effect of the composting time on the gaseous emissions and the compost stability in a full-scale sewage sludge composting plant. Science of the Total Environment, 654, 311-323. https://doi.org/10.1016/j.scitotenv.2018.11.081
Hamdi, H., Hechmi, S., Khelil, M. N., Zoghlami, I.R., Benzarti, S., Mokni-Tlili, S., Hassen, A., Jedidi, N. (2019). Repetitive land application of urban sewage sludge: effect of amendment rates and soil texture on fertility and degradation parameters. Catena, 172, 11–20.
Ilani, T., Herrmann, I., Karnieli, A., & Arye, G. (2016). Characterization of the biosolids composting process by hyperspectral analysis. Waste Management, http://dx.doi.org/10.1016/j.wasman.2015.11.043
Jalali, M., Imanifard, A. (2021). Availability of heavy metals to cabbage grown in sewage sludge amended calcareous soils under greenhouse conditions. International Journal of Phytoremediation, 23(14), 1525-1537.
https://doi.org/10.1080/15226514.2021.1915956
Jin, C., Archer, G., & Parker, W. (2018). Current status of sludge processing and biosolids disposition in Ontario. Resources, Conservation & Recycling, 137, 21–31. https://doi.org/10.1016/j.resconrec.2018.05.024
Joo, S. H., Monaco, F. D., Antmann, E., Chorath, P. (2015). Sustainable approaches for minimizing biosolids production and maximizing reuse options in sludge management: A review. Journal of Environmental Management, 1e13.
https://dx.doi.org/10.1016/j.jenvman.2015.05.014
Kanteraki, A. E., Isari, E.A., Zafeiropoulos, I., Cangemi, S., Bountla, A., Kalavrouziotis, I. K. (2024). Structural analysis and characterization of biosolids. A case study of biosolids from wastewater treatment plants in Western Greece. Science of The Total Environment, 908, 168425, https://doi.org/10.1016/j.scitotenv.2023.168425
Kim, M., Abdulazeez, M., Haroun, B. M., Nakhla, G., & Keleman, M. (2019) Microbial communities in co-digestion of food wastes and wastewater Biosolids. Bioresource Technology, 289, 121580. https://doi.org/10.1016/j.biortech.2019.121580
Kumar, V., & Chopra, A. K. (2012). Translocation of micronutrients in French bean (Phaseolus vulgaris L.) grown on soil amended with paper mill sludge. Journal of Chemical and Pharmaceutical Research, 4(11), 4822-4829.
Kumar, V., & Chopra, A. K. (2013). Accumulation and translocation of metals in soil and different parts of French bean (Phaseolus vulgaris L.) amended with sewage sludge. Bulletin of Environmental Contamination and Toxicology, 92(1), 103-108. https://doi.org/10.1007/s00128-013-1142-0
Kumar, V., Chopra, A.K., &Srivastava S. (2016). Assessment of heavy metals in spinach (Spinacia oleracea L.) grown in sewage sludge amended soil. Communications in Soil Science and Plant Analysis, 47(2), 221-236. https://doi.org/10.1080/00103624.2015.1122799
Kumar, V., & Chopra, A. K. (2016). Agronomical performance of high yielding cultivar of eggplant (Solanum melongena L.) grown in sewage sludge amended soil. Research in Agriculture, 1(1), 1-24.
Kumar, V., Chopra, A. K., & Kumar, A. (2017). A review on sewage sludge (Biosolids) a resource for sustainable agriculture. Archives of Agriculture and Environmental Science, 2(4), 340-347. https://doi.org/10.26832/24566632.2017.020417
Kumar, P., Kumar, V., Adelodun, B., Bedekovi´c, D., Kos, I., Širi´c, I., Alamri, S. A. M., Alrumman, S. A., Eid, E. M., Abou Fayssal, S., et al. (2022). Sustainable use of sewage sludge as a casing material for button mushroom (Agaricus bisporus) cultivation: Experimental and prediction modeling studies for uptake of metal elements. Journal of Fungi, 8, 112. https://doi.org/10.3390/jof8020112
Kumar, V., Eid, E. M., Al-Bakre, D. A., Abdallah, S. M., Širi´c, I., Andabaka, Ž., Kumar, P., Goala, M., Adelodun, B., Singh, J., et al. (2022). Combined use of sewage sludge and plant growth-promoting rhizobia improves germination, biochemical response and yield of ridge gourd (Luffa acutangula (L.) Roxb.) under field conditions. Agriculture, 12, 173. https://doi.org/10.3390/agriculture12020173
Kumar, P., Alamri, S. A. M., Alrumman, S. A., Eid, E. M., Adelodun, B., Goala, M., Choi, K. S., & Kumar, V. (2022). Foliar use of TiO2-nanoparticles for okra (Abelmoschus esculentus L. Moench) cultivation on sewage sludge–amended soils: biochemical response and heavy metal accumulation. Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-022-20526-1
Li, M., Tang, Y., Lu, X.-Y., Zhang, Z., & Cao, Y. (2018). Phosphorus speciation in sewage sludge and the sludge-derived biochar by a combination of experimental methods and theoretical simulation, Water Research, https://doi.org/10.1016/j.watres.2018.04.039
Li, S., Zhu, L., Li, J., Ke, X., Wu, L., Luo, Y., & Christie, P. (2020). Influence of long-term biosolid applications on communities of soil fauna and their metal accumulation: A field study. Environmental Pollution, 260, 114017. https://doi.org/10.1016/j.envpol.2020.114017
Melo, W., Delarica, D., Guedes, A., Lavezzo, L., Donha, R., de Araújo, A., de Melo, G., Peltre, C., Nyord, T., Bruun, S., Jensen, L.S., & Magid, J. (2015). Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage. Agriculture Ecosystem and Environment, 211, 94–101. https://doi.org/10.1016/J.AGEE.2015
Rehman, R. A., Rizwan, M., Qayyum, M. F., Alib, S., Zia-ur-Rehman, M., Zafar-ul-Hye, M., Hafeez, F., & Iqbal, M.F. (2018) Efficiency of various sewage sludges and their biochars in improving selected soil properties and growth of wheat (Triticum aestivum). Journal of Environmental Management, 223, 607–613. https://doi.org/10.1016/j.jenvman.2018.06.081
Rékásia, M., Mazsua, N., Draskovitsa, E., Bernhardta, B., Szabób, A., Rivierc, P.A., Farkasc, C., Borsányid, B., Pirkóa, B., Molnára, S., Kátaye, G., & Uzingera, N. (2019). Comparing the agrochemical properties of compost and vermicomposts produced from municipal sewage sludge digestate. Bioresource
Technology, 291, 121861. https://doi.org/10.1016/j.biortech.2019.121861
Rigby, H., Perez-Viana, F., Cass, J., Rogers, M., Smith, S. R. (2009). The influence of soil and biosolids type, and microbial immobilisation on nitrogen availability in biosolids-amended agricultural soils – implications for fertiliser recommendations. Soil Use Management, 25, 395–408. http://dx.doi.org/10.1111/j.1475-2743.2009.00240.x
Rigby, H., Clarke, B. O., Pritchard, D. L., Meehan, B., Beshah, F., Smith, S. R., & Porter, N. A. (2016). A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Science of the Total Environment, 541, 1310–1338. http://dx.doi.org/10.1016/j.scitotenv.2015.08.089
Sahin, U., Kiziloglu, F. M., Abdallh, A. H. M., Badaou, A. N. A. D., Sabtow, H.A., & Canbolat, M. Y. (2020). Use of a stabilized sewage sludge in combination with gypsum to improve saline-sodic soil properties leached by recycled wastewater under freeze-thaw conditions. Journal of Environmental
Management, 274, 111171. https://doi.org/10.1016/j.jenvman.2020.111171
Shah, Z., Jani, Y. M., & Khan, F. (2014). Evaluation of organic wastes for composting. Communication in Soil Science and Plant Analysis, 45, 309–320. http://dx.doi.org/10.1080/00103624.2013.861909
Sharma, B., Sarkar, A., Singh, P., Singh, R. P. (2017). Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Management, 64, 117-132. http://dx.doi.org/10.1016/j.wasman.2017.03.002
Siebielec, G., Siebielec, S., & Lipski, D. (2018). Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity. Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2018.03.245
Singh, R. P., Singh, P., Ibrahim, M. H., Hashim, R. (2011). Land Application of sewage sludge: Physicochemical and Microbial response. Reviews of Environmental Contamination and Toxicology, 214, 41–61.
Širi´c, I., AL-Huqail, A. A., Kumar, P., Goala, M., Fayssal, S.A., Adelodun, B., Ajibade, F.O., Alrumman, S. A., Alamri, S. A. M., Taher, M. A., Singh, J., Kumar, V., & Eid, E. M. (2023). Sustainable management of sewage sludge using Dhaincha (Sesbania bispinosa (Jacq.) W. Wight) cultivation: Studies on heavy metal uptake and characterization of fibers. Agronomy, 13, 1066. https://doi.org/10.3390/agronomy13041066
Skowrońska, M., Bielińska, E. J., Szymański, K., Antonkiewicz, B. F. J., & Kołodziej, B. (2020). An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil. Catena, 189, 104484. https://doi.org/10.1016/j.catena.2020.104484
Smith, S. R. (2009). A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International, 35(1), 142-56. https://doi.org/10.1016/j.envint.2008.06.009
Tian, G., Chiu, C. Y., Franzluebbers, A. J., Oladeji, O. O., Granato, T. C., & Cox, A. E. (2014). Biosolids amendment dramatically increases sequestration of crop residue-carbon in agricultural soils in western Illinois. Applied Soil Ecology, 85, 86–93. http://dx.doi.org/10.1016/j.apsoil.2014.09.001
Toledo, M., Márquez, P., Siles, J. A., Chica, A. F., & Martín, M. A. (2019).
Co-composting of sewage sludge and eggplant waste at full scale: Feasibility study to valorize eggplant waste and minimize the odoriferous impact of sewage sludge. Journal of Environmental Management, 247, 205–213. https://doi.org/10.1016/j.jenvman.2019.06.076
Torri, S. I., Corrˆea, R. S., & Renella, G. (2017). Biosolid application to agricultural land contribution to global phosphorus recycle: A review. Pedosphere, 27(1), 1–16, https://doi.org/10.1016/S1002-0160(15)60106-0
Urbaniak, M., Wyrwicka, A., Tołoczko, W., Serwecińska, L., Zieliński, M. (2017). The effect of sewage sludge application on soil properties and willow (Salix sp.) cultivation. Science of the Total Environment, 586, 66–75. http://dx.doi.org/10.1016/j.scitotenv.2017.02.012
Urra, J., Alkorta, I., Garbisu, C. (2019). Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy, 9, 542. https://doi.org/10.3390/agronomy9090542
Wijesekara, H., Bolan, N. S., Thangavel, R., Seshadri, B., Surapaneni, A., Saint, C., Hetherington, C., Matthews, P., Vithanage, M. (2017). The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil, Chemosphere, https://doi.org/10.1016/j.chemosphere.2017.09.090
Xiu-lan, Z., Bi-qiong, L., Jiu-pai, N., & De-ti, X. (2016). Effect of four crop straws on transformation of organic matter during sewage sludge composting. Journal of Integrative Agriculture, 15(1), 232–240. https://doi.org/10.1016/S2095-3119(14)60954-0
Zieli´nska, A., Oleszczuk, P., Charmas, B., Skubiszewska-Zieba, J., & Pasieczna-Patkowska, S. (2015). Effect of sewage sludge properties on the biochar characteristic. Journal of Analytical and Applied Pyrolysis. http://dx.doi.org/10.1016/j.jaap.2015.01.025
Zhou, J., Yu, Y. W., Jiang, Y., Yang, Y. H., Zhang, C. (2019). Effect of biochar on available heavy metals during sewage sludge composting and land application of compost. Huan Jing Ke Xue, 40(2), 987-993. https://doi.org/10.13227/j.hjkx.201804184
Zuo, W., Gu, C., Zhang, W., Xu, K., Wang, Y., Bai, Y., Shan, Y., & Dai, Q. (2019). Sewage sludge amendment improved soil properties and sweet sorghum yield and quality in a newly reclaimed mudflat land. Science of the Total Environment, 654, 541–549. https://doi.org/10.1016/j.scitotenv.2018.11.127
Published
How to Cite
Issue
Section
Copyright (c) 2024 Agriculture and Environmental Science Academy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.