A review on co-composting of biosolids and its use in crops cultivation for agriculture sustainability

Sheetal Rani 1 , Shweta 2 , Rahul Gandhi 3 , Akansha Rana 4 , Vinod Kumar 5

1   Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar-249404 (Uttarakhand), India
2   Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar-249404 (Uttarakhand), India
3   Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar-249404 (Uttarakhand), India
4   Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar-249404 (Uttarakhand), India
5   Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar-249404 (Uttarakhand), India

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2024.0904029

doi

Abstract

Generation and disposal of biosolids (solid and semisolid materials left after the wastewater treatment) has becoming a challenge globally. A large number of objectionable components like heavy metals, pesticides, detergents and pathogens restricts the direct application of biosolids in the cultivation of agricultural crops as it contaminates the soil as well as the cultivated crops and causes health issues. Co-composting of biosolids can be a viable option to utilize the biosolids in a definite proportion along with different types of biodegradable materials (co-substrate) such as, kitchen waste, agricultural residues, forestry waste and waste from the animal husbandry etc. Co-composting improves the nutrients status of the composted biosolids and reduce the risk of accumulation of toxic heavy metals and pathogens in the soil and cultivated crops. The application of biosolids compost in to the soils significantly improve the physical structure, nutrients composition and microbial profile of the soils and subsequently enhance the crops productivity. It also reduces the risk of contamination of the soils and cultivated agricultural crops in comparison to the direct use of biosolids in soil amendment. In this paper we discussed the use of biosolids in agriculture, co-composting of biosolids with different co-substrates and their application in the cultivation of different agricultural crops for sustainable agriculture production.

Keywords:

Contamination, Health risk, Heavy metals, Pathogens, SDGs

Downloads

Download data is not yet available.

References

Adelodun, B., Kumar, P., Odey, G., Ajibade, F. O., Ibrahim, R. G., Alamri, S. A. M., Alrumman, S.A., Eid, E.M., Kumar, V., et al. (2022). A safe haven of SARS-CoV-2 in the environment: prevalence and potential transmission risks in the effluent, sludge, and biosolids. Geoscience Frontiers, 13(6), 101373.

https://doi.org/10.1016/j.gsf.2022.101373

Breda, C. C., Soares, M. B., Tavanti, R. F. R., Viana, D. G., Freddi, O. d. S., Piedade, A. R., Mahl, D., Traballi, R. C., & Guerrini, I. A. (2020). Successive sewage sludge fertilization: Recycling for sustainable agriculture. Waste Management, 109, 38–50. https://doi.org/10.1016/j.wasman.2020.04.045

Buta, M., Hubeny, J., Zieli´nski, W., Harnisz, M., & Korzeniewska, E. (2021). Sewage sludge in agriculture – the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops – a review. Ecotoxicology and Environmental Safety, 214, 112070.

https://doi.org/10.1016/j.ecoenv.2021.112070

Chagas, J. K. M., Figueiredo, C. C. d., Paz-Ferreiro, J. (2021). Sewage sludge biochars effects on corn response and nutrition and on soil properties in a 5-yr field experiment. Geoderma, 401, 115323. https://doi.org/10.1016/j.geoderma.2021.115323

Chopra, A. K., Sharma, A. K., & Kumar, V. (2011). Overview of Electrolytic treatment: An alternative technology for purification of wastewater. Archives of Applied Science Research, 3(5), 191-206

Cristina, G., Camelin, E., Pugliese, M., Tommasi, T., & Fino, D. (2019). Evaluation of anaerobic digestates from sewage sludge as a potential solution for improvement of soil fertility. Waste Management, 99, 122–134. https://doi.org/10.1016/j.wasman.2019.08.018

Černe, M., Palčić, I., Major, N., Pasković, I., Perković, J., Užila, Z., & Ban, D. (2021). Effect of sewage sludge derived compost or biochar amendment on the phytoaccumulation of potentially toxic elements and radionuclides by Chinese cabbage. Journal of Environmental Management, 293, 112955.

https://doi.org/10.1016/j.jenvman.2021.112955

Dad, K., Wahid, A., Khan, A. A., Anwar, A., Ali, M., Sarwar, N., Ali, S., Ahmad, A., Ahmad, M., Khan, K. A., Ansari, M. J., Gulshan, A.B., Mohammed, A.A. (2019). Nutritional status of different biosolids and their impact on various growth parameters of wheat (Triticum aestivum L.). Saudi Journal of Biological Sciences, 26, 1423–1428. https://doi.org/10.1016/j.sjbs.2018.09.001

Elmi, A., Al-Khaldy, A., & AlOlayan, M. (2019). Sewage sludge land application: Balancing act between agronomic benefits and environmental concerns. Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2019.119512

EPA (2023). Basic Information about Biosolids. Retrieved from https://www.epa.gov/biosolids/basic-information-about-biosolids.

Ghorbani, M., Konvalina, P., Walkiewicz, A., Neugschwandtner, R.W., Kopecký, M., Zamanian, K., Chen, W.H., Bucur, D. (2022). Feasibility of biochar derived from sewage sludge to promote sustainable agriculture and mitigate GHG emissions—A review. International Journal of Environmental Research and Public Health, 19, 12983. https://doi.org/10.3390/ijerph191912983

González, D., Colón, J., Gabriel, D., Sánchez, A. (2019). The effect of the composting time on the gaseous emissions and the compost stability in a full-scale sewage sludge composting plant. Science of the Total Environment, 654, 311-323. https://doi.org/10.1016/j.scitotenv.2018.11.081

Hamdi, H., Hechmi, S., Khelil, M. N., Zoghlami, I.R., Benzarti, S., Mokni-Tlili, S., Hassen, A., Jedidi, N. (2019). Repetitive land application of urban sewage sludge: effect of amendment rates and soil texture on fertility and degradation parameters. Catena, 172, 11–20.

Ilani, T., Herrmann, I., Karnieli, A., & Arye, G. (2016). Characterization of the biosolids composting process by hyperspectral analysis. Waste Management, http://dx.doi.org/10.1016/j.wasman.2015.11.043

Jalali, M., Imanifard, A. (2021). Availability of heavy metals to cabbage grown in sewage sludge amended calcareous soils under greenhouse conditions. International Journal of Phytoremediation, 23(14), 1525-1537.

https://doi.org/10.1080/15226514.2021.1915956

Jin, C., Archer, G., & Parker, W. (2018). Current status of sludge processing and biosolids disposition in Ontario. Resources, Conservation & Recycling, 137, 21–31. https://doi.org/10.1016/j.resconrec.2018.05.024

Joo, S. H., Monaco, F. D., Antmann, E., Chorath, P. (2015). Sustainable approaches for minimizing biosolids production and maximizing reuse options in sludge management: A review. Journal of Environmental Management, 1e13.

https://dx.doi.org/10.1016/j.jenvman.2015.05.014

Kanteraki, A. E., Isari, E.A., Zafeiropoulos, I., Cangemi, S., Bountla, A., Kalavrouziotis, I. K. (2024). Structural analysis and characterization of biosolids. A case study of biosolids from wastewater treatment plants in Western Greece. Science of The Total Environment, 908, 168425, https://doi.org/10.1016/j.scitotenv.2023.168425

Kim, M., Abdulazeez, M., Haroun, B. M., Nakhla, G., & Keleman, M. (2019) Microbial communities in co-digestion of food wastes and wastewater Biosolids. Bioresource Technology, 289, 121580. https://doi.org/10.1016/j.biortech.2019.121580

Kumar, V., & Chopra, A. K. (2012). Translocation of micronutrients in French bean (Phaseolus vulgaris L.) grown on soil amended with paper mill sludge. Journal of Chemical and Pharmaceutical Research, 4(11), 4822-4829.

Kumar, V., & Chopra, A. K. (2013). Accumulation and translocation of metals in soil and different parts of French bean (Phaseolus vulgaris L.) amended with sewage sludge. Bulletin of Environmental Contamination and Toxicology, 92(1), 103-108. https://doi.org/10.1007/s00128-013-1142-0

Kumar, V., Chopra, A.K., &Srivastava S. (2016). Assessment of heavy metals in spinach (Spinacia oleracea L.) grown in sewage sludge amended soil. Communications in Soil Science and Plant Analysis, 47(2), 221-236. https://doi.org/10.1080/00103624.2015.1122799

Kumar, V., & Chopra, A. K. (2016). Agronomical performance of high yielding cultivar of eggplant (Solanum melongena L.) grown in sewage sludge amended soil. Research in Agriculture, 1(1), 1-24.

Kumar, V., Chopra, A. K., & Kumar, A. (2017). A review on sewage sludge (Biosolids) a resource for sustainable agriculture. Archives of Agriculture and Environmental Science, 2(4), 340-347. https://doi.org/10.26832/24566632.2017.020417

Kumar, P., Kumar, V., Adelodun, B., Bedekovi´c, D., Kos, I., Širi´c, I., Alamri, S. A. M., Alrumman, S. A., Eid, E. M., Abou Fayssal, S., et al. (2022). Sustainable use of sewage sludge as a casing material for button mushroom (Agaricus bisporus) cultivation: Experimental and prediction modeling studies for uptake of metal elements. Journal of Fungi, 8, 112. https://doi.org/10.3390/jof8020112

Kumar, V., Eid, E. M., Al-Bakre, D. A., Abdallah, S. M., Širi´c, I., Andabaka, Ž., Kumar, P., Goala, M., Adelodun, B., Singh, J., et al. (2022). Combined use of sewage sludge and plant growth-promoting rhizobia improves germination, biochemical response and yield of ridge gourd (Luffa acutangula (L.) Roxb.) under field conditions. Agriculture, 12, 173. https://doi.org/10.3390/agriculture12020173

Kumar, P., Alamri, S. A. M., Alrumman, S. A., Eid, E. M., Adelodun, B., Goala, M., Choi, K. S., & Kumar, V. (2022). Foliar use of TiO2-nanoparticles for okra (Abelmoschus esculentus L. Moench) cultivation on sewage sludge–amended soils: biochemical response and heavy metal accumulation. Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-022-20526-1

Li, M., Tang, Y., Lu, X.-Y., Zhang, Z., & Cao, Y. (2018). Phosphorus speciation in sewage sludge and the sludge-derived biochar by a combination of experimental methods and theoretical simulation, Water Research, https://doi.org/10.1016/j.watres.2018.04.039

Li, S., Zhu, L., Li, J., Ke, X., Wu, L., Luo, Y., & Christie, P. (2020). Influence of long-term biosolid applications on communities of soil fauna and their metal accumulation: A field study. Environmental Pollution, 260, 114017. https://doi.org/10.1016/j.envpol.2020.114017

Melo, W., Delarica, D., Guedes, A., Lavezzo, L., Donha, R., de Araújo, A., de Melo, G., Peltre, C., Nyord, T., Bruun, S., Jensen, L.S., & Magid, J. (2015). Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage. Agriculture Ecosystem and Environment, 211, 94–101. https://doi.org/10.1016/J.AGEE.2015

Rehman, R. A., Rizwan, M., Qayyum, M. F., Alib, S., Zia-ur-Rehman, M., Zafar-ul-Hye, M., Hafeez, F., & Iqbal, M.F. (2018) Efficiency of various sewage sludges and their biochars in improving selected soil properties and growth of wheat (Triticum aestivum). Journal of Environmental Management, 223, 607–613. https://doi.org/10.1016/j.jenvman.2018.06.081

Rékásia, M., Mazsua, N., Draskovitsa, E., Bernhardta, B., Szabób, A., Rivierc, P.A., Farkasc, C., Borsányid, B., Pirkóa, B., Molnára, S., Kátaye, G., & Uzingera, N. (2019). Comparing the agrochemical properties of compost and vermicomposts produced from municipal sewage sludge digestate. Bioresource

Technology, 291, 121861. https://doi.org/10.1016/j.biortech.2019.121861

Rigby, H., Perez-Viana, F., Cass, J., Rogers, M., Smith, S. R. (2009). The influence of soil and biosolids type, and microbial immobilisation on nitrogen availability in biosolids-amended agricultural soils – implications for fertiliser recommendations. Soil Use Management, 25, 395–408. http://dx.doi.org/10.1111/j.1475-2743.2009.00240.x

Rigby, H., Clarke, B. O., Pritchard, D. L., Meehan, B., Beshah, F., Smith, S. R., & Porter, N. A. (2016). A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Science of the Total Environment, 541, 1310–1338. http://dx.doi.org/10.1016/j.scitotenv.2015.08.089

Sahin, U., Kiziloglu, F. M., Abdallh, A. H. M., Badaou, A. N. A. D., Sabtow, H.A., & Canbolat, M. Y. (2020). Use of a stabilized sewage sludge in combination with gypsum to improve saline-sodic soil properties leached by recycled wastewater under freeze-thaw conditions. Journal of Environmental

Management, 274, 111171. https://doi.org/10.1016/j.jenvman.2020.111171

Shah, Z., Jani, Y. M., & Khan, F. (2014). Evaluation of organic wastes for composting. Communication in Soil Science and Plant Analysis, 45, 309–320. http://dx.doi.org/10.1080/00103624.2013.861909

Sharma, B., Sarkar, A., Singh, P., Singh, R. P. (2017). Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Management, 64, 117-132. http://dx.doi.org/10.1016/j.wasman.2017.03.002

Siebielec, G., Siebielec, S., & Lipski, D. (2018). Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity. Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2018.03.245

Singh, R. P., Singh, P., Ibrahim, M. H., Hashim, R. (2011). Land Application of sewage sludge: Physicochemical and Microbial response. Reviews of Environmental Contamination and Toxicology, 214, 41–61.

Širi´c, I., AL-Huqail, A. A., Kumar, P., Goala, M., Fayssal, S.A., Adelodun, B., Ajibade, F.O., Alrumman, S. A., Alamri, S. A. M., Taher, M. A., Singh, J., Kumar, V., & Eid, E. M. (2023). Sustainable management of sewage sludge using Dhaincha (Sesbania bispinosa (Jacq.) W. Wight) cultivation: Studies on heavy metal uptake and characterization of fibers. Agronomy, 13, 1066. https://doi.org/10.3390/agronomy13041066

Skowrońska, M., Bielińska, E. J., Szymański, K., Antonkiewicz, B. F. J., & Kołodziej, B. (2020). An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil. Catena, 189, 104484. https://doi.org/10.1016/j.catena.2020.104484

Smith, S. R. (2009). A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International, 35(1), 142-56. https://doi.org/10.1016/j.envint.2008.06.009

Tian, G., Chiu, C. Y., Franzluebbers, A. J., Oladeji, O. O., Granato, T. C., & Cox, A. E. (2014). Biosolids amendment dramatically increases sequestration of crop residue-carbon in agricultural soils in western Illinois. Applied Soil Ecology, 85, 86–93. http://dx.doi.org/10.1016/j.apsoil.2014.09.001

Toledo, M., Márquez, P., Siles, J. A., Chica, A. F., & Martín, M. A. (2019).

Co-composting of sewage sludge and eggplant waste at full scale: Feasibility study to valorize eggplant waste and minimize the odoriferous impact of sewage sludge. Journal of Environmental Management, 247, 205–213. https://doi.org/10.1016/j.jenvman.2019.06.076

Torri, S. I., Corrˆea, R. S., & Renella, G. (2017). Biosolid application to agricultural land contribution to global phosphorus recycle: A review. Pedosphere, 27(1), 1–16, https://doi.org/10.1016/S1002-0160(15)60106-0

Urbaniak, M., Wyrwicka, A., Tołoczko, W., Serwecińska, L., Zieliński, M. (2017). The effect of sewage sludge application on soil properties and willow (Salix sp.) cultivation. Science of the Total Environment, 586, 66–75. http://dx.doi.org/10.1016/j.scitotenv.2017.02.012

Urra, J., Alkorta, I., Garbisu, C. (2019). Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy, 9, 542. https://doi.org/10.3390/agronomy9090542

Wijesekara, H., Bolan, N. S., Thangavel, R., Seshadri, B., Surapaneni, A., Saint, C., Hetherington, C., Matthews, P., Vithanage, M. (2017). The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil, Chemosphere, https://doi.org/10.1016/j.chemosphere.2017.09.090

Xiu-lan, Z., Bi-qiong, L., Jiu-pai, N., & De-ti, X. (2016). Effect of four crop straws on transformation of organic matter during sewage sludge composting. Journal of Integrative Agriculture, 15(1), 232–240. https://doi.org/10.1016/S2095-3119(14)60954-0

Zieli´nska, A., Oleszczuk, P., Charmas, B., Skubiszewska-Zieba, J., & Pasieczna-Patkowska, S. (2015). Effect of sewage sludge properties on the biochar characteristic. Journal of Analytical and Applied Pyrolysis. http://dx.doi.org/10.1016/j.jaap.2015.01.025

Zhou, J., Yu, Y. W., Jiang, Y., Yang, Y. H., Zhang, C. (2019). Effect of biochar on available heavy metals during sewage sludge composting and land application of compost. Huan Jing Ke Xue, 40(2), 987-993. https://doi.org/10.13227/j.hjkx.201804184

Zuo, W., Gu, C., Zhang, W., Xu, K., Wang, Y., Bai, Y., Shan, Y., & Dai, Q. (2019). Sewage sludge amendment improved soil properties and sweet sorghum yield and quality in a newly reclaimed mudflat land. Science of the Total Environment, 654, 541–549. https://doi.org/10.1016/j.scitotenv.2018.11.127

Published

2024-12-25

How to Cite

Rani, S., Shweta, Gandhi, R., Rana, A., & Kumar, V. (2024). A review on co-composting of biosolids and its use in crops cultivation for agriculture sustainability . Archives of Agriculture and Environmental Science, 9(4), 840-846. https://doi.org/10.26832/24566632.2024.0904029

Issue

Section

Review Articles