A comprehensive review on drought stress in wheat: Causes, mechanism and management practices

doi https://doi.org/10.26832/24566632.2025.1001024

doi

Abstract

Plant health is cornerstone for agricultue productivity and food security. Severe impacts have been observed in wheat crop including physiological, morphological and bio chemical components as a result of water insufficiency. Seedling growth aspects such as seedling length, length of primary roots, seedling dry weight, and germination percentage are also affected whenever water scarcity prevails in the soil. Early flag leaf senescence decreased the grain yield of wheat while a delay in flag leaf senescence enhanced the grain yield of wheat under drought stress. Physiological phenomena like chlorophyll content, photosynthesis rate, rate of evapotranspiration, and relative water content in wheat are affected by water scarcity in soil. Proline content, osmotic adjustment, and abscisic acid accumulations are affected in periods of water deficit in wheat. Escape, avoidance, recovery, and tolerance meachanism appear in the wheat crop to sort out drought stress. More effective and suitable drought-resistant wheat cultivars producing through advanced techniques are pivotal to combat against drought stress as well as for higher yield and sustainability purposes. In this paper we discussed the causes, mechanism and management practices of drought stress in wheat.

Keywords:

Abiotic stress, Abscisic acid, Morphology, Osmotic adjustment, Reactive oxygen species

Downloads

Download data is not yet available.

References

Abid, M., Ali, S., Qi, L. K., Zahoor, R., Tian, Z., Jiang, D., Snider, J. L., & Dai, T. (2018). Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 8(1), 1–15. https://doi.org/10.1038/s41598-018-21441-7

Ahmad, A., & Kumar, R. (2015). Effect of irrigation scheduling on the growth and yield of wheat genotypes. Agricultural Science Digest - A Research Journal, 35(3), 199. https://doi.org/10.5958/0976-0547.2015.00045.2

Ahmad, A., Aslam, Z., Javed, T., Hussain, S., Raza, A., Shabbir, R., Mora-Poblete, F., Saeed, T., Zulfiqar, F., Ali, M. M., Nawaz, M., Rafiq, M., Osman, H. S., Albaqami, M., Ahmed, M. A. A., & Tauseef, M. (2022). Screening of Wheat (Triticum aestivum L.) Genotypes for Drought Tolerance through Agronomic and Physiological Response. Agronomy, 12(2). https://doi.org/10.3390/agronomy12020287

Ahmed, K., Shabbir, G., Ahmed, M., & Shah, K. N. (2020). Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Science of the Total Environment, 729, 139082. https://doi.org/10.1016/j.scitotenv.2020.139082

Ahmad, A., & Kumar, R. (2015). Effect of irrigation scheduling on the growth and yield of wheat genotypes. Agricultural Science Digest - A Research Journal, 35(3), 199. https://doi.org/10.5958/0976-0547.2015.00045.2

Ahmed, N., Zhang, Y., Li, K., Zhou, Y., Zhang, M., & Li, Z. (2019). Exogenous application of glycine betaine improved water use efficiency in winter wheat (Triticum aestivum L.) via modulating photosynthetic efficiency and antioxidative capacity under conventional and limited irrigation conditions. Crop Journal, 7(5), 635–650. https://doi.org/10.1016/j.cj.2019.03.004

Ahmed, N., Zhang, Y., Yu, H., Gabar, A., Zhou, Y., Li, Z., & Zhang, M. (2019). Seed priming with glycine betaine improve seed germination characteristics and antioxidant capacity of wheat (Triticum aestivum L.) seedlings under water-stress conditions. Applied Ecology and Environmental Research, 17(4), 8333–8350. https://doi.org/10.15666/aeer/1704_83338350

Anwar, A., & Kim, J. K. (2020). Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. International Journal of Molecular Sciences, 21(8). https://doi.org/10.3390/ijms21082695

Aryal, S., Dhungel, B., Subedi, K. R., Lamichhane, P., & Bhattarai, S. (2021). Response of wheat parameters to sowing date and irrigation supplied in terai region of Nepal. Tropical Agrobiodiversity, 2(1), 07–09. https://doi.org/10.26480/trab.01.2021.07.09

Bagale, S. (2021). Climate Ready Crops for Drought Stress: a Review in Nepalese Context. Reviews in Food and Agriculture, 2(2), 83–87. https://doi.org/10.26480/rfna.02.2021.83.87

Ben Rejeb, I., Pastor, V., & Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: Molecular mechanisms. Plants, 3(4), 458–475. https://doi.org/10.3390/plants3040458

Bhandari, R., Gnawali, S., Nyaupane, S., Kharel, S., Poudel, M., & Panth, P. (2021). Effect of drought & irrigated environmental condition on yield & yield attributing characteristics of bread wheat-a review. Reviews in Food and Agriculture, 2(2), 59–62. https://doi.org/10.26480/rfna.02.2021.59.62

Bi, H., Kovalchuk, N., Langridge, P., Tricker, P. J., Lopato, S., & Borisjuk, N. (2017). The impact of drought on wheat leaf cuticle properties. BMC Plant Biology, 17(1), 1–13. https://doi.org/10.1186/s12870-017-1033-3

Biel, W., Jaroszewska, A., Stankowski, S., Sobolewska, M., & Kępińska-Pacelik, J. (2021). Comparison of yield, chemical composition, and chronograph properties of common and ancient wheat grains. European Food Research and Technology, 247(6), 1525–1538. https://doi.org/10.1007/s00217-021-03729-7

Borisjuk, N., Kishchenko, O., Eliby, S., Schramm, C., Anderson, P., Jatayev, S., Kurishbayev, A., & Shavrukov, Y. (2019). Genetic Modification for Wheat Improvement: BioMed Research International, 2019, 1–18.

Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contribute to plant productivity under drought. Frontiers in Plant Science, 4, 1–16. https://doi.org/10.3389/fpls.2013.00442

DaCosta, M., & Huang, B. (2006). Osmotic adjustment associated with variation in bentgrass tolerance to drought stress. Journal of the American Society for Horticultural Science, 131(3), 338–344. https://doi.org/10.21273/jashs.131.3.338

Dhakal, A., Adhikari, C., Manandhar, D., Bhattarai, S., & Shrestha, S. (2021). Effect of abiotic stress in wheat: a review. Reviews in Food and Agriculture, 2(2), 69–72. https://doi.org/10.26480/rfna.02.2021.69.72

Dolferus, R., Ji, X., & Richards, R. A. (2011). Abiotic stress and control of grain number in cereals. In Plant Science (Vol. 181, Issue 4). https://doi.org/10.1016/j.plantsci.2011.05.015

El Habti, A., Fleury, D., Jewell, N., Garnett, T., & Tricker, P. J. (2020). Tolerance of combined drought and heat stress is associated with transpiration maintenance and water soluble carbohydrates in wheat grains. Frontiers in Plant Science, 11(October), 1–13. https://doi.org/10.3389/fpls.2020.568693

Elkelish, A., El-Mogy, M. M., Niedbała, G., Piekutowska, M., Atia, M. A. M., Hamada, M. M. A., Shahin, M., Mukherjee, S., El-Yazied, A. A., Shebl, M., Jahan, M. S., Osman, A., Abd El-Gawad, H. G., Ashour, H., Farag, R., Selim, S., & Ibrahim, M. F. M. (2021). Roles of exogenous α-lipoic acid and cysteine in mitigation of drought stress and restoration of grain quality in wheat. Plants, 10(11), 1–25. https://doi.org/10.3390/plants10112318

Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673–689. https://doi.org/10.1007/s00018-014-1767-0

Faseela, P., Sinisha, A. K., Brestič, M., & Puthur, J. T. (2020). Chlorophyll fluorescence parameters as indicators of a particular abiotic stress in rice. Photosynthetica, 58(Special Issue), 293–300. https://doi.org/10.32615/ps.2019.147

Ghorbanpour, M., & Varma, A. (2017). Medicinal plants and environmental challenges. In Medicinal Plants and Environmental Challenges (Issue January). https://doi.org/10.1007/978-3-319-68717-9

Guizani, A., Askri, H., Amenta, M. L., Defez, R., Babay, E., Bianco, C., Rapaná, N., Finetti-Sialer, M., & Gharbi, F. (2023). Drought responsiveness in six wheat genotypes: identification of stress resistance indicators. Frontiers in Plant Science, 14(September), 1–17. https://doi.org/10.3389/fpls.2023.1232583

Guo, J., Xu, W., Yu, X., Shen, H., Li, H., Cheng, D., Liu, A., Liu, J., Liu, C., Zhao, S., & Song, J. (2016). Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines. Frontiers in Plant Science, 7(NOVEMBER 2016), 1–10. https://doi.org/10.3389/fpls.2016.01809

Haider, I., Raza, M. A. S., Iqbal, R., Aslam, M. U., Habib-ur-Rahman, M., Raja, S., Khan, M. T., Aslam, M. M., Waqas, M., & Ahmad, S. (2020). Potential effects of biochar application on mitigating the drought stress implications on wheat (Triticum aestivum L.) under various growth stages. Journal of Saudi Chemical Society, 24(12), 974–981. https://doi.org/10.1016/j.jscs.2020.10.005

Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Al Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defence in plants under abiotic stress: Revisiting the crucial role of a universal defence regulator. Antioxidants, 9(8), 1–52. https://doi.org/10.3390/antiox9080681

Hassan, N. M., El-Bastawisy, Z. M., El-Sayed, A. K., Ebeed, H. T., & Nemat Alla, M. M. (2015). Roles of dehydrin genes in wheat tolerance to drought stress. Journal of Advanced Research, 6(2), 179–188. https://doi.org/10.1016/j.jare.2013.11.004

Hou, P., Wang, F., Luo, B., Li, A., Wang, C., Shabala, L., Ahmed, H. A. I., Deng, S., Zhang, H., Song, P., Zhang, Y., Shabala, S., & Chen, L. (2021). Antioxidant enzymatic activity and osmotic adjustment as components of the drought tolerance mechanism in carex auricula. Plants, 10(3), 1–20. https://doi.org/10.3390/plants10030436

Hrmova, M., & Hussain, S. S. (2021). Plant transcription factors involved in drought and associated stresses. International Journal of Molecular Sciences, 22(11). https://doi.org/10.3390/ijms22115662

Hussain, S., Hussain, S., Qadir, T., Khaliq, A., Ashraf, U., Parveen, A., Saqib, M., & Rafiq, M. (2019). Drought stress in plants: An overview on implications, tolerance mechanisms, and agronomic mitigation strategies. Plant Science Today, 6(4), 389–402. https://doi.org/10.14719/pst.2019.6.4.578

Chutia, J., & Borah, S. P. (2012). Water stress effects on leaf growth and chlorophyll content but not the grain yield in traditional rice (Oryza sativa) genotypes of Assam, India II. Protein and Proline Status in Seedlings under PEG Induced Water Stress. American Journal of Plant Sciences, 03(07), 971–980. https://doi.org/10.4236/ajps.2012.37115

Ilyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., Fahad, S., Khan, A., & Ullah, A. (2021a). Drought Tolerance Strategies in Plants: A Mechanistic Approach. Journal of Plant Growth Regulation, 40(3), 926–944. https://doi.org/10.1007/s00344-020-10174-5

Jan, R., Asaf, S., Numan, M., Lubna, & Kim, K. M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11(5), 1–31. https://doi.org/10.3390/agronomy11050968

Kaur, G., & Asthir, B. (2017). Molecular responses to drought stress in plants. Biologia Plantarum, 61(2), 201–209. https://doi.org/10.1007/s10535-016-0700-9

Khadka, K., Earl, H. J., Raizada, M. N., & Navabi, A. (2020). A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in Plant Science, 11(June), 1–26. https://doi.org/10.3389/fpls.2020.00715

Khan, S., Anwar, S., Yu, S., Sun, M., Yang, Z., & Gao, Z. Q. (2019). Development of drought-tolerant transgenic wheat: Achievements and limitations. International Journal of Molecular Sciences, 20(13), 1–18. https://doi.org/10.3390/ijms20133350

Kong, H., Zhang, Z., Qin, J., & Akram, N. A. (2021). Interactive effects of abscisic acid (Aba) and drought stress on the physiological responses of winter wheat (Triticum aestivum L.). Pakistan Journal of Botany, 53(5), 1545–1551. https://doi.org/10.30848/PJB2021-5(11)

Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6(February), 1–14. https://doi.org/10.3389/fchem.2018.00026

Lonbani, M., & Arzani, A. (2011). P9105.Pdf. 9, 315–329.

Mahpara, S., Zainab, A., Ullah, R., Kausar, S., Bilal, M., Latif, M. I., Arif, M., Akhtar, I., Al-Hashimi, A., Elshikh, M. S., Zivcak, M., & Zuan, A. T. K. (2022). The impact of PEG-induced drought stress on seed germination and seedling growth of different bread wheat (Triticum aestivum L.) genotypes. PLoS ONE, 17(2 February), 1–15. https://doi.org/10.1371/journal.pone.0262937

Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V. G., Karthikeyan, A., & Ramalingam, J. (2020). Seed priming: A feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 21(21), 1–23. https://doi.org/10.3390/ijms21218258

Ministry of Agriculture and Livestock Development. (2021). Statistical Information On Nepalese Agriculture (2077/78 ). Government of Nepal, Kathmandu, Nepal, 73, 1–26.

Muhammad Aslam, M., Waseem, M., Jakada, B. H., Okal, E. J., Lei, Z., Saqib, H. S. A., Yuan, W., Xu, W., & Zhang, Q. (2022). Mechanisms of abscisic acid-mediated drought stress responses in plants. International Journal of Molecular Sciences, 23(3). https://doi.org/10.3390/ijms23031084

Mwamahonje, A., Eleblu, J. S. Y., Ofori, K., Deshpande, S., Feyissa, T., & Tongoona, P. (2021). Drought tolerance and application of marker-assisted selection in sorghum. Biology, 10(12). https://doi.org/10.3390/biology10121249

Nardino, M., Perin, E. C., Aranha, B. C., Carpes, S. T., Fontoura, B. H., de Sousa, D. J. P., & de Freitas, D. S. (2022). Understanding drought response mechanisms in wheat and multi-trait selection. PLoS ONE, 17(4 April), 1–22. https://doi.org/10.1371/journal.pone.0266368

Nyaupane, S., Poudel, M. R., Panthi, B., Dhakal, A., & Bhandari, R. (2024). Drought stress effect, tolerance, and management in wheat – a review. Cogent Food & Agriculture, 10(1). https://doi.org/10.1080/23311932.2023.2296094

Nykiel, M., Gietler, M., Fiedler, J., Prabucka, B., Rybarczyk-Płońska, A., Graska, J., Boguszewska-Mańkowska, D., Muszyńska, E., Morkunas, I., & Labudda, M. (2022). Signal transduction in cereal plants struggling with environmental stresses: from perception to response. Plants, 11(8), 1–30. https://doi.org/10.3390/plants11081009

Osmolovskaya, N., Shumilina, J., Kim, A., Didio, A., Grishina, T., Bilova, T., Keltsieva, O. A., Zhukov, V., Tikhonovich, I., Tarakhovskaya, E., Frolov, A., & Wessjohann, L. A. (2018). Methodology of drought stress research: Experimental setup and physiological characterization. International Journal of Molecular Sciences, 19(12). https://doi.org/10.3390/ijms19124089

Pareek, B., Rana, R. S., Rana, N., Manuja, S., Kumar, N., & Pareek, N. K. (2023). Wheat productivity and profitability under different sowing window and irrigation scheduling based on weather model and spatial data in north Western Himalayas. Journal of Soil and Water Conservation, 22(2), 186–192. https://doi.org/10.5958/2455-7145.2023.00025.5

Pequeno, D. N. L., Hernández-Ochoa, I. M., Reynolds, M., Sonder, K., Moleromilan, A., Robertson, R. D., Lopes, M. S., Xiong, W., Kropff, M., & Asseng, S. (2021). Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environmental Research Letters, 16(5). https://doi.org/10.1088/1748-9326/abd970

Poddar, S., Chandra, B., Viswavidyalaya, K., & Roy, S. (2022). Response and breeding of wheat under drought stress. Agriculture & Environment, 3(January), 1–6. https://doi.org/10.5281/zenodo.5893942

Poudel et al. (2020). Evaluation of wheat genotypes under irrigated, heat stress and drought conditions. Journal of Biology and Today’s World, 9(1), 1–003.

Poudel, M. R. A. M., Neupane, M. P., Panthi, B., Nyaupane, S., Dhakal, A., & Paudel, H. (2023). Identification of drought-tolerant wheat (Triticum aestivum) genotypes using stress tolerance indices in the western terai region of Nepal. 24(4), 652–659. https://doi.org/10.31830/2348-7542.2023.ROC-1012

Poudel, M. R., Ghimire, S., Pandey, M. P., Dhakal, K., Thapa, D. B., & Poudel, H. K. (2020). Yield stability analysis of wheat genotypes at irrigated, heat stress and drought condition. Journal of Biology and Today’s World, 9(5), 220. https://www.iomcworld.org/articles/yield-stability-analysis-of-wheat-genotypes-at-irrigated-heat-stress-and-drought-condition.pdf

Rakszegi, M., Darkó, É., Lovegrove, A., Molnár, I., Láng, L., Bedo, Z., Molnár-Láng, M., & Shewry, P. (2019). Drought stress affects the protein and dietary fibre content of wholemeal wheat flour in wheat/Aegilops addition lines. PLoS ONE, 14(2), 1–19. https://doi.org/10.1371/journal.pone.0211892

Rijal, B., Baduwal, P., Chaudhary, M., Chapagain, S., Khanal, S., Khanal, S., & Poudel, P. B. (2020). Drought stress impacts on wheat and its resistance mechanisms. Malaysian Journal of Sustainable Agriculture, 5(2), 67–76. https://doi.org/10.26480/mjsa.02.2021.67.76

Sah, M. K., Bhurer, K. P., Shah, P., Akhtar, T., Yadav, M., & Ranjan, R. (2017). Chemical science review and letters irrigation scheduling in wheat using tensiometer at bara district of Nepal. Chem Sci Rev Lett, 6(22), 710–714.

Sahani, S., Shrestha, S., Bhusal, T. R., Gupta, R. K., Sharma, P., Khanal, C., & Poudel, M. R. (2021). Effect of drought on wheat in Nepal. 2(2), 73–75. https://doi.org/10.26480/rfna.02.2021

Sallam, A., Alqudah, A. M., Dawood, M. F. A., Baenziger, P. S., & Börner, A. (2019). Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. In International Journal of Molecular Sciences (Vol. 20, Issue 13). https://doi.org/10.3390/ijms20133137

Samaneh, A. D. L., Masoudian, N., Roodi, B., Ebadi, M., & Khajeh Zadeh, M. H. (2020). Effect of drought stress on some morphological and physiological characteristics of two resistance and sensitive wheat cultivars. Pakistan Journal of Medical and Health Sciences, 14(2), 1266–1275.

Sami, A., Xue, Z., Tazein, S., Arshad, A., He Zhu, Z., Ping Chen, Y., Hong, Y., Tian Zhu, X., & Jin Zhou, K. (2021). CRISPR–Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered, 12(1), 5814–5829. https://doi.org/10.1080/21655979.2021.1969831

Sarto, M. V. M., Sarto, J. R. W., Rampim, L., Rosset, J. S., Bassegio, D., Costa, P. F. da, & Inagaki, A. M. (2017). Wheat phenology and yield under drought: A review. Australian Journal of Crop Science, 11(08), 941–946. https://doi.org/10.21475/ajcs.17.11.08.pne351

Sattar, A., Sher, A., Ijaz, M., Ul-Allah, S., Hussain, S., Rasheed, U., Hussain, J., Al-Qahtani, S. M., Al-Harbi, N. A., Mahmoud, S. F., & Ibrahim, M. F. M. (2023). Modulation of antioxidant defense mechanisms and morpho-physiological attributes of wheat through exogenous application of silicon and melatonin under water deficit conditions. Sustainability (Switzerland), 15(9). https://doi.org/10.3390/su15097426

Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts plants and different approaches to alleviate its adverse effects. Plants, 10(2), 1–25. https://doi.org/10.3390/plants10020259

Sharma, B., Yadav, L., Shrestha, A., Shrestha, S., Subedi, M., Subedi, S., & Shrestha, J. (2022). Drought stress and its management in wheat (Triticum aestivum L.): a review. Agricultural Science and Technology, 14(1), 3–14. https://doi.org/10.15547/10.15547/ast.2022.01.001

Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., De Groot, S., Soole, K., & Langridge, P. (2017). Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers in Plant Science, 8(November), 1–8. https://doi.org/10.3389/fpls.2017.01950

Shohat, H., Cheriker, H., Kilambi, H. V., Illouz Eliaz, N., Blum, S., Amsellem, Z., Tarkowská, D., Aharoni, A., Eshed, Y., & Weiss, D. (2021). Inhibition of gibberellin accumulation by water deficiency promotes fast and long-term ‘drought avoidance’ responses in tomatoes. New Phytologist, 232(5), 1985–1998. https://doi.org/10.1111/nph.17709

Stevens, T., & Madani, K. (2016). Future climate impacts on maize farming and food security in Malawi. Scientific Reports, 6(October), 1–14. https://doi.org/10.1038/srep36241

Tasmina, T., Khan, A., Karim, A., Akter, N., & Islam, R. (2017). Physiological changes of wheat varieties under water deficit condition. Bangladesh Agronomy Journal, 19(2), 105–114. https://doi.org/10.3329/baj.v19i2.31859

Teshome, D. T., Zharare, G. E., & Naidoo, S. (2020). The threat of the combined effect of biotic and abiotic stress factors in forestry under a changing climate. Frontiers in plant science, 11, 601009.

Tufail, T., Saeed, F., Afzaal, M., Ain, H. B. U., Gilani, S. A., Hussain, M., & Anjum, F. M. (2021). Wheat straw: A natural remedy against different maladies. Food Science and Nutrition, 9(4), 2335–2344. https://doi.org/10.1002/fsn3.2030

Vassileva, V., Signarbieux, C., Anders, I., & Feller, U. (2011). Genotypic variation in drought stress response and subsequent recovery of wheat (Triticum aestivum L.). Journal of Plant Research, 124(1), 147–154. https://doi.org/10.1007/s10265-010-0340-7

Wang, J. Y., Turner, N. C., Liu, Y. X., Siddique, K. H. M., & Xiong, Y. C. (2017). Effects of drought stress on morphological, physiological, and biochemical characteristics of wheat species differing in ploidy level. Functional Plant Biology, 44(2), 219–234. https://doi.org/10.1071/FP16082

Yadav, G., Prajapat, K., Fagodiya, R. K., & Sarangi, S. K. (2023). Management strategies for abiotic stresses in crops under different agro-ecological situations Management strategies for abiotic stresses in crops under different agro-ecological situations. Indian Journal of Agronomy, 68, 160-176.

Yang, H., Hu, W., Zhao, J., Huang, X., Zheng, T., & Fan, G. (2021). Genetic improvement combined with seed Ethephon priming improved grain yield and drought resistance of wheat exposed to soil water deficit at the tillering stage. Plant Growth Regulation, 95(3), 399–419. https://doi.org/10.1007/s10725-021-00749-x

Younis, A., Ramzan, F., Ramzan, Y., Zulfiqar, F., Ahsan, M., & Lim, K. B. (2020). Molecular markers improve abiotic stress tolerance in crops: A review. Plants, 9(10), 1–16. https://doi.org/10.3390/plants9101374

Zaheer, M. S., Ali, H. H., Soufan, W., Iqbal, R., Habib-Ur-rahman, M., Iqbal, J., Israr, M., & El Sabagh, A. (2021). Potential effects of biochar application for improving wheat (Triticum aestivum L.) growth and soil biochemical properties under drought stress conditions. Land, 10(11). https://doi.org/10.3390/land10111125

Zhang, J., Zhang, S., Cheng, M., Jiang, H., Zhang, X., Peng, C., Lu, X., Zhang, M., & Jin, J. (2018). Effect of drought on agronomic traits of rice and wheat: A meta-analysis. International Journal of Environmental Research and Public Health, 15(5). https://doi.org/10.3390/ijerph15050839

Zhang, Y., Song, H., Wang, X., Zhou, X., & Zhang, K. (2020). The roles of different types of trichomes in tomato. Agronomy, 10(3), 411.

Zhang, Y., Xu, J., Li, R., Ge, Y., Li, Y., & Li, R. (2023). Plants’ response to abiotic stress: mechanisms and strategies. International Journal of Molecular Sciences, 24(13), 1–17. https://doi.org/10.3390/ijms241310915

Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S., & Imran, A. (2021). Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological Research, 242(October 2020), 126626. https://doi.org/10.1016/j.micres.2020.126626

Published

2025-03-25

How to Cite

A comprehensive review on drought stress in wheat: Causes, mechanism and management practices . (2025). Archives of Agriculture and Environmental Science, 10(1), 164-174. https://doi.org/10.26832/24566632.2025.1001024

Issue

Section

Review Articles