Genetic diversity and morphological characterization of wheat (Triticum aestivum L.) landraces in Nepal

Mukunda Bhattarai 1 , Priya Shahi 2 , Jonish Chand 3 , Jitesh Jung Lamichhane 4

1   National Agriculture Genetic Resources Centre, Khumaltar, Lalitpur, Nepal
2   Institute of Agriculture and Animal Science, Lamjung Campus, Tribhuvan University, Nepal
3   College of Agriculture, Health, and Natural Resources, Kentucky State University, USA
4   Institute of Agriculture and Animal Science, Campus of Live Sciences, Tribhuvan University, Nepal

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2025.100104

doi

Abstract

This study examined the genetic diversity and phenotypic characteristics of 60 wheat landraces from 24 districts across Nepal. The study was conducted at the National Agriculture Genetic Resources Centre (NAGRC) in Khumaltar, where it employed a non-replicated augmented block design to assess eight qualitative and sixteen quantitative traits based on Bioversity International descriptors. The Shannon-Weaver diversity index (H') for wheat landraces varies from 0.457 to 0.979 across qualitative traits. Tillering capacity shows the highest diversity at 0.979, and glume hairiness has the lowest diversity at 0.457. The coefficient of variation (CV) for the quantitative traits of wheat landraces varied widely; percentages ranged from 7.58% for days of heading, suggesting relatively low variability, to 36.56% for spike exertion, indicating high variability among the samples. Principal Component Analysis (PCA) with an eigenvalue greater than 1 revealed that five principal components accounted for 70.95% of the variability, with traits like plant height and spike exertion playing pivotal roles in genotype differentiation. A dendrogram generated using a UPGMA clustering approach organized the landraces into two groups. Cluster-I consists of 56 accessions (93.33%), and Cluster–II consist of 4 Accessions (6.67%) separated by 2374.99, indicating phenotypic differentiation between the groups. These findings underscore the importance of targeted breeding programs based on specific trait performance, supported by further correlation analysis to identify optimal characteristics for breeding. This research highlights the need to continue evaluating these landraces through environmental trials and biotechnological approaches to fully capitalize on their genetic potential for improving wheat cultivation.

Keywords:

Breeding, Cluster analysis, Genetic diversity, Wheat landraces

Downloads

Download data is not yet available.

References

Bai, X., Qiao, P., Liu, H., Shang, Y., Guo, J., & Dai, K. (2024). Genome-wide identification of the E-class gene family in wheat: evolution, expression, and interaction. Frontiers in Plant Science, 15, 1419437. https://doi.org/10.3389/FPLS.2024.1419437/BIBTEX

Broccanello, C., Bellin, D., DalCorso, G., Furini, A., & Taranto, F. (2023). Genetic approaches to exploit landraces for improvement of Triticum turgidum ssp. durum in the age of climate change. In Frontiers in Plant Science, https://doi.org/10.3389/fpls.2023.1101271

Cheng, S., Feng, C., Wingen, L. U., Cheng, H., Riche, A. B., Jiang, M., Leverington-Waite, M., Huang, Z., Collier, S., Orford, S., Wang, X., Awal, R., Barker, G., O’Hara, T., Lister, C., Siluveru, A., Quiroz-Chávez, J., Ramírez-González, R. H., Bryant, R., & Griffiths, S. (2024). Harnessing landrace diversity empowers wheat breeding. Nature, 632(8026), 823–831. https://doi.org/10.1038/s41586-024-07682-9

FAOSTAT. (n.d.). Retrieved February 11, 2025, from https://www.fao.org/faostat/en/#data/QCL

Fellahi, Z. E. A., Boubellouta, T., Hannachi, A., Belguet, H., Louahdi, N., Benmahammed, A., Utkina, A. O., & Rebouh, N. Y. (2024). Exploitation of the Genetic Variability of Diverse Metric Traits of Durum Wheat (Triticum turgidum L. ssp. durum Desf.) Cultivars for Local Adaptation to Semi-Arid Regions of Algeria. Plants, 13(7). https://doi.org/10.3390/plants13070934

Grote, U., Fasse, A., Nguyen, T. T., & Erenstein, O. (2021). Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. In Frontiers in Sustainable Food Systems (Vol. 4). Frontiers Media S.A. https://doi.org/10.3389/fsufs.2020.617009

Hoban, S., Bruford, M. W., Funk, W. C., Galbusera, P., Griffith, M. P., Grueber, C. E., Heuertz, M., Hunter, M. E., Hvilsom, C., Stroil, B. K., Kershaw, F., Khoury, C. K., Laikre, L., Lopes-Fernandes, M., MacDonald, A. J., Mergeay, J., Meek, M., Mittan, C., Mukassabi, T. A., & Vernesi, C. (2021). Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. BioScience, 71(9), 964–976. https://doi.org/10.1093/BIOSCI/BIAB054

International Board for Plant Genetic. (1985). Descriptors for wheat (Revised). International Board for Plant Genetic Resources. https://hdl.handle.net/10568/73163

Joshi, B. K., Mudwari, A., Bhatta, M. R., Paudel, P. K., Bhattarai Bal, B. P., & Joshi, K. (2013). Conservation Science Translating Knowledge into Actions Wheat gene pool and its conservation in Nepal.

Kaduwal, S., Bhandari, G., & Thapa, P. (2019). Agro-morphological characterization of pre-release varieties of wheat for hilly region of Nepal. https://www.researchgate.net/publication/357515961

Kandel, M., Bastola, A., Sapkota, P., Chaudhary, O., Dhakal, P., Chalise, P., & Shrestha, J. (2018b). Analysis of Genetic Diversity among the Different Wheat (Triticum aestivum L.) Genotypes. Türk Tarım ve Doğa Bilimleri Dergisi, 180–185. https://doi.org/10.30910/turkjans.421363

Karkee, A., Mainali, R. P., Ghimire, K. H., Thapa, P., Joshi, B. K., Subedi, S., & Shrestha, J. (2023). Characterization of Nepalese Bread Wheat Landraces Based on Morpho-Phenological and Agronomic Traits. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 33(2), 269–280. https://doi.org/10.29133/yyutbd.1205181

Khadka, K., Torkamaneh, D., Kaviani, M., Belzile, F., Raizada, M. N., & Navabi, A. (2020). Population structure of Nepali spring wheat (Triticum aestivum L.) germplasm. BMC Plant Biology, 20(1), 1–12. https://doi.org/10.1186/s12870-020-02722-8

Khan, A., Ahmad, M., Ahmed, M., & Iftikhar Hussain, M. (2020). Rising Atmospheric Temperature Impact on Wheat and Thermotolerance Strategies. Plants, 10(1), 43. https://doi.org/10.3390/PLANTS10010043

Kumar, S., Kumar, H., Gupta, V., Kumar, A., Singh, C. M., Kumar, M., Singh, A. K., Panwar, G. S., Kumar, S., Singh, A. K., & Kumar, R. (2023). Capturing agro-morphological variability for tolerance to terminal heat and combined heat–drought stress in landraces and elite cultivar collection of wheat. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1136455

Mohammadi, R., Cheghamirza, K., Geravandi, M., & Abbasi, S. (2022). Assessment of genetic and agro-physiological diversity in a global durum wheat germplasm. Cereal Research Communications, 50(1), 117–126. https://doi.org/10.1007/s42976-021-00143-3

Mujaju, C., & Chakauya, E. (2008). Morphological Variation of Sorghum Landrace Accessions On-Farm in Semi-Arid Areas of Zimbabwe. International Journal of Botany, 4(4), 376–382. https://doi.org/10.3923/ijb.2008.376.382

Mustafa, H., Farooq, J., Ejaz-Ul-Hasan, E., Bibi, T., & Mahmood, T. (2015). Cluster and principle component analyses of maize accessions under normal and water stress conditions. Journal of Agricultural Sciences, Belgrade, 60(1), 33–48. https://doi.org/10.2298/JAS1501033M

Poudel, A., Thapa, D. B., & Sapkota, M. (2017). Assessment of genetic diversity of bread wheat (Triticum aestivum L.) genotypes through cluster and principal component analysis. International Journal of Experimental Research and Review, 11, 1–9.

Prasai, H. K. (2017). Varietal Improvement of Wheat for Eastern Terai of Nepal. International Journal of Applied Sciences and Biotechnology, 4(4), 519–524. https://doi.org/10.3126/ijasbt.v4i4.16271

Shannon CE, & W Weaver. (1949). The mathematical theory of communication. The University of Illinois.

Shewry, P. R. (2007). Improving the protein content and composition of cereal grain. Journal of Cereal Science, 46(3), 239–250. https://doi.org/10.1016/J.JCS.2007.06.006

Siddquie, M., & Hoque, M. (2023). Genetic diversity based on Principal Component and cluster analysis for various characters in spring wheat genotypes under drought condition. Fundamental and Applied Agriculture, 8(1), 435. https://doi.org/10.5455/faa.146884

Temesgen, B. (2021). Role and economic importance of crop genetic diversity in food security. International Journal of Agricultural Science and Food Technology, 164–169. https://doi.org/10.17352/2455-815x.000104

Thapa, D. B., Subedi, M., Sapkota, M., Bohara, S., Pokhrel, K. R., Aryal, L., Acharya, B., Tripathi, S., Chaudhary, C., Mahato, B., Timsina, K., Govindan, V., & Joshi, A. K. (2024). The first assessment of grain yield and associated traits in durum wheat across a decade in Nepal. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.145606

Thapa, P., Joshi, B. K., Mishra, K. K., Mainali, R., Ghimire, K., & Karkee, A. (2021). Characterization and Diversity Assessment of Nepalese Garlic (Allium sativum L.) Landraces. Agriculture and Environment, 22, 80–94. https://www.researchgate.net/publication/368880557

Ullah Ajmal, S., Minhas, N. M., Hamdani, A., Shakir, A., Zubair, M., & Ahmad, Z. (2013). Multivariate analysis of genetic divergence in wheat (Triticum aestivum) germplasm. Pakistan Journal of Botany, 45(5), 1643-1648.

Upadhyaya, H. D., Dwivedi, S. L., Sharma, S., Lalitha, N., Singh, S., Varshney, R. K., & Gowda, C. L. L. (2014). Enhancement of the use and impact of germplasm in crop improvement. Plant Genetic Resources, 12(S1), S155–S159. https://doi.org/10.1017/S1479262114000458

Verma, A., Tyagi, S., & Singh, G. (2024). Biplot analysis to evaluate wheat performance and adaptability in multi-location trials of peninsular zone. Journal of AgroSearch, 11, 09–17. https://doi.org/10.21921/jas.v11i01.14766

Vincent, M. M., Xiuli, T., & Eric, C. (2016). Assessment of genetic diversity among sixty bread wheat (Triticum aestivum) cultivars using microsatellite markers. African Journal of Biotechnology, 15(21), 960–973. https://doi.org/10.5897/ajb2015.15185

Wan, H., Yang, F., Li, J., Wang, Q., Liu, Z., Tang, Y., & Yang, W. (2023). Genetic Improvement and Application Practices of Synthetic Hexaploid Wheat. Genes, 14(2), 283. https://doi.org/10.3390/GENES14020283

Zhang, T., He, Y., DePauw, R., Jin, Z., Garvin, D., Yue, X., Anderson, W., Li, T., Dong, X., Zhang, T., & Yang, X. (2022). Climate change may outpace current wheat breeding yield improvements in North America. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33265-1

Published

2025-03-25

How to Cite

Bhattarai, M., Shahi, P., Chand, J., & Lamichhane, J. J. (2025). Genetic diversity and morphological characterization of wheat (Triticum aestivum L.) landraces in Nepal. Archives of Agriculture and Environmental Science, 10(1), 23-32. https://doi.org/10.26832/24566632.2025.100104

Issue

Section

Research Articles