Effect of cold air plasma and seaweed extract treatment on wheat seed germination and gene expression under salt stress conditions

Authors

  • J. J. Kadhim Field Crops Department, College of Agriculture, University of Karbala, Iraq
  • Hadel Sabar Hamad Department of Field Crops, College of Agriculture, University of Anbar, Iraq
  • A.T. AL Yasari Field Crops Department, College of Agriculture, University of Karbala, Iraq
  • Ali Nadhim Farhood Field Crops Department, College of Agriculture, University of Karbala, Iraq

DOI:

https://doi.org/10.26832/24566632.2025.1002022

Keywords:

Cold air plasma, Salinity, Seaweed extract, Wheat, Gene expression

Abstract

This study investigated the potential of cold air plasma (CAP) and seaweed extract (SWE), individually and in combination, to enhance wheat seed germination and molecular responses under salinity stress. A factorial CRD experiment was conducted using four treatment types (control, cold air plasma (CAP), seaweed extract (SWE), CAP+SWE) and four salinity levels (0, 4, 8, and 12 dS/m), with detailed physiological and gene expression analyses. The dual CAP+SWE treatment significantly outperformed all other treatments across key parameters. Germination percentage increased from 63.59% in untreated seeds to 89.42%, while mean germination time decreased from 4.53 to 3.56 days. Radicle length improved from 4.23 cm to 5.44 cm, and total chlorophyll content rose from 34.24 to 40.57 SPAD units. Enzymatic activity also increased, with α-amylase rising from 3.00 to 3.96 U/mg protein and SOD from 84.08 to 92.86 U/g fresh weight under CAP+SWE. At the molecular level, RT-qPCR analysis revealed that the CAP+SWE treatment significantly upregulated salt-responsive genes: P5CS (3.42-fold), NHX1 (3.14-fold), and APX1 (3.18-fold), compared to control levels. Notably, the highest gene expression values were observed at 8 dS/m salinity, suggesting optimal stress-induction synergy. These findings showed that combining physical (CAP) and biological (SWE) priming produces complementary physiological and molecular responses, hence improving the salt stress resistance in wheat. In saline conditions, this combined priming technique is a sensible, environmentally friendly way to raise seed vigour and early growth performance.

Downloads

Download data is not yet available.

References

Abdel Latef, A. A. H., Alhmad, M. F., & Sabra, A. (2022). Seaweed extract enhances chlorophyll stability under salt stress. Journal of Plant Growth Regulation, 41, 253–265. https://doi.org/10.1007/s00344-021-10374-1

Ahmad, W., Saeed, S., & Naveed, S. (2023). Synergistic use of plasma and bio-stimulants improves seedling emergence in chickpea. Environmental Science and Pollution Research, 30(9), 24551–24563. https://doi.org/10.1007/s11356-022-24174-3

Akbari, S., Kazemi, M., & Rahimi, A. (2022). Salt stress reduces enzymatic activity in wheat. Plant Physiology Reports, 27(3), 400–408. https://doi.org/10.1007/s40502-021-00600-1

Ali, H., Abbas, M., Rehman, N. U., Ahmad, M., & Khan, M. A. (2022). Seaweed extract modulates physiological and molecular responses in wheat under salinity stress. Plant Physiology and Biochemistry, 170, 161–170. https://doi.org/10.1016/j.plaphy.2021.11.020

Ali, Z., Farooq, M., & Asif, M. (2023). Salinity-induced root growth inhibition and role of seed priming. Frontiers in Plant Science, 14, 1012345. https://doi.org/10.3389/fpls.2023.1012345

Al-Solami, H. A., Abdel Latef, A. A. H., & Kordrostami, M. (2022). Seaweed biostimulant enhances NHX1 expression in barley. Plants, 11(3), 353. https://doi.org/10.3390/plants11030353

Al-Taie, Y., Kadhim, J. J., & Abbas, H. (2022). Integrating biostimulants and plasma treatments improves wheat vigor under saline stress. Journal of Soil Science and Plant Nutrition, 22(4), 2812–2823. https://doi.org/10.1007/s42729-022-00816-5

Ashraf, M., & Harris, P. J. C. (2021). Antioxidants and salt tolerance in plants. Journal of Plant Physiology, 232, 153534. https://doi.org/10.1016/j.jplph.2021.153534

Battacharyya, D., Babgohari, M. Z., & Rathor, P. (2021). Seaweed-based biofertilizers for sustainable agriculture. International Journal of Environmental Science and Technology, 18, 205–224. https://doi.org/10.1007/s13762-020-02917-6

Benikhlef, L., Zegaoui, O., & Djebar, M. R. (2021). Plasma priming enhances enzymatic activities in barley. Russian Journal of Plant Physiology, 68, 728–736. https://doi.org/10.1134/S1021443721050043

Bertoldo, L., Dal Cortivo, C., & Ferrari, G. (2023). Effects of seaweed extract on maize root morphology. Plants, 12(1), 94. https://doi.org/10.3390/plants12010094

Bouraima, M., Zhang, Y., & Liu, D. (2021). Cold plasma improves tomato growth under saline irrigation. Environmental and Experimental Botany, 187, 104482. https://doi.org/10.1016/j.envexpbot.2021.104482

Carillo, P., Ciarmiello, L. F., Woodrow, P., Corrado, G., Chiaiese, P., & Rouphael, Y. (2020). Plant biostimulants: New insights into the functional role of seaweed extracts. Journal of Applied Phycology, 32, 2241–2260. https://doi.org/10.1007/s10811-019-02023-5

Chen, J., Li, Y., & Wang, X. (2021). Antioxidant enzyme responses to cold plasma in wheat. Plant Stress, 2, 100034. https://doi.org/10.1016/j.stress.2021.100034

Chen, X., Xu, F., & Wang, S. (2022). Plasma-induced expression of early germination genes in rice under stress. Plasma Chemistry and Plasma Processing, 42(3), 677–692. https://doi.org/10.1007/s11090-021-10231-1

Dobrin, D., Banu, J. R., & Maria, G. (2021). Cold plasma effects on seed physiology. Plasma Chemistry and Plasma Processing, 41(4), 1043–1060. https://doi.org/10.1007/s11090-021-10178-3

Elhindi, K., El-Din, A., & Kassem, H. (2021). Seaweed extract alleviates salinity in basil. Journal of Horticultural Science and Biotechnology, 96(5), 599–608. https://doi.org/10.1080/14620316.2021.1878476

El-Mahdy, M. T., Mohamed, M. F., & El-Shabrawi, H. (2022). Seaweed extract upregulates APX1 under stress. Biologia, 77, 2979–2989. https://doi.org/10.1007/s11756-022-01128-7

El-Naggar, A., El-Metwally, I., & Soliman, M. (2023). Integration of biostimulants and plasma in maize salinity tolerance. Plants, 12(6), 1156. https://doi.org/10.3390/plants12061156

El-Tayeb, M. A., Mahmoud, A., & Ali, Z. A. (2023). Antioxidant response in wheat primed with plasma and biostimulants. Physiology and Molecular Biology of Plants, 29, 77–88. https://doi.org/10.1007/s12298-023-01245-2

FAO, Food and Agriculture Organization of the United Nations. (2021). The state of food and agriculture 2021: Making agrifood systems more resilient to shocks and stresses. https://doi.org/10.4060/cb4476en

Ghareeb, H. R., Mahfouz, M. M., & El-Sayed, W. M. (2020). α-Amylase assay in wheat under salinity. Journal of Plant Physiology, 246, 153114. https://doi.org/10.1016/j.jplph.2020.153114

Ghasemi, M., Ramezani, M., & Rezvani Moghaddam, P. (2023). Integrating plasma and biostimulants boosts barley tolerance. Plant Signaling & Behavior, 18(1), 2199903. https://doi.org/10.1080/15592324.2023.2199903

Hasanuzzaman, M., Bhuyan, M. H. M. B., & Anee, T. I. (2023). Seed priming with physical and biological agents in wheat under salinity. Physiology and Molecular Biology of Plants, 29, 1235–1246. https://doi.org/10.1007/s12298-023-01295-6

ISTA (2020). Guidelines for Selecting and Using ISTA® Test Procedures and Projects. International Seed Testing Association, Richtiarkade 18 CH-8304 Wallisellen. https://ista.org/docs/2020_ISTA_Guidelines.pdf

Kumar, R., Sharma, P., & Singh, R. (2023). Biostimulant and plasma treatment synergy in wheat seedling vigor. Journal of Agronomy and Crop Science, 209, 1020–1031. https://doi.org/10.1111/jac.12585

Latique, S., Saidi, N., & Hannachi, C. (2020). Effect of cold plasma on seed germination and physiological responses in wheat. Applied Physics A, 126(4), 303. https://doi.org/10.1007/s00339-020-3364-3

Li, S., Deng, Y., & Qin, Y. (2021). Plasma-induced expression of antioxidant genes in maize. International Journal of Agriculture and Biology, 25(3), 587–594. https://doi.org/10.17957/IJAB/15.1710

Ma, L., Liu, X., Lv, W., & Yang, Y. (2022). Molecular mechanisms of plant responses to salt stress. Frontiers in Plant Science, 13, 934877. https://doi.org/10.3389/fpls.2022.934877

Ma, Y., Liu, X., & Yang, H. (2021). Plasma-enhanced expression of ion homeostasis genes in wheat. BMC Plant Biology, 21, 372. https://doi.org/10.1186/s12870-021-03075-z

Mishra, A., & Jha, B. (2020). Biochemical estimation of SOD in plants. Biochemical and Biophysical Research Communications, 528(3), 567–572. https://doi.org/10.1016/j.bbrc.2020.05.124

Nasrollahi, S., Razavi, F., & Kamaladini, H. (2022). Seaweed extract priming improves gene expression in soybean. Environmental and Experimental Botany, 193, 104666. https://doi.org/10.1016/j.envexpbot.2021.104666

Nawaz, M. A., Huang, Y., & Bie, Z. (2022). Plasma-induced proline biosynthesis via P5CS activation. International Journal of Molecular Sciences, 23(7), 3871. https://doi.org/10.3390/ijms23073871

Niazi, A., Akhtar, N., & Ahmad, R. (2023). Dual priming boosts stress gene expression in barley. Plant Stress, 3, 100071. https://doi.org/10.1016/j.stress.2023.100071

Radwan, H. A., Youssef, S. A., & Khalil, A. M. (2023). Enhancing salt tolerance in watermelon seedlings using seaweed extract. Journal of Plant Growth Regulation, 42, 512–525. https://doi.org/10.1007/s00344-022-10585-1

Rahimi, M., Mohammadi, H., & Hashemi, M. (2023). Synergistic elicitors improve maize salinity tolerance. Journal of Plant Interactions, 18(1), 11–24. https://doi.org/10.1080/17429145.2022.2161672

Shah, T., Latif, S., & Iqbal, A. (2021). Seed priming with seaweed extract improves wheat salt tolerance. Planta, 254(6), 118. https://doi.org/10.1007/s00425-021-03622-5

Tamošiūnė, I., Miliauskienė, J., & Žūkienė, R. (2020). Plasma priming improves wheat seedling development. Agronomy, 10(2), 252. https://doi.org/10.3390/agronomy10020252

Tian, B., Yang, J., & Liu, Y. (2022). Plasma enhances antioxidant enzyme gene expression in tomato. Journal of Plant Research, 135, 523–535. https://doi.org/10.1007/s10265-022-01361-5

Younesi, O., Rahmani, F., & Khodayari, M. (2022). Seaweed extract modulates germination enzymes in sunflower under salinity. Journal of Crop Science and Biotechnology, 25, 45–53. https://doi.org/10.1007/s12892-021-00015-7

Yuan, H., Li, T., & Liu, H. (2021). Role of proline and P5CS in salt tolerance. Plant Molecular Biology, 105(6), 609–622. https://doi.org/10.1007/s11103-021-01175-1

Zhang, Q., Cai, C., Duan, W., Zhang, J., & Wang, L. (2020). Cold plasma treatment enhances seed germination and stress resistance in maize. Scientific Reports, 10, 13262. https://doi.org/10.1038/s41598-020-70152-3

Zörb, C., Geilfus, C. M., & Dietz, K. J. (2019). Salinity and crop yield. Plant Biology, 21(S1), 31–38. https://doi.org/10.1111/plb.12884

Downloads

Published

2025-06-25

How to Cite

Kadhim, J. J., Hamad, H. S., AL Yasari, A., & Farhood, A. N. (2025). Effect of cold air plasma and seaweed extract treatment on wheat seed germination and gene expression under salt stress conditions. Archives of Agriculture and Environmental Science, 10(2), 342–350. https://doi.org/10.26832/24566632.2025.1002022

Issue

Section

Research Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.