Evaluation of elite spring wheat genotypes for grain yield and other agronomic attributes in hills of Sudurpaschim Province, Nepal

Anjal Nainabasti 1 , Bishesh Subedi 2 , Damber Singh Thapa 3 , Khem Bahadur Bohora 4 , Mithlesh Kumar Shah 5 , Khem Raj Pant 6

1   Gokuleshwor Agriculture and Animal Science College (GAASC), IAAS, TU, Baitadi, NEPAL
2   Gokuleshwor Agriculture and Animal Science College (GAASC), IAAS, TU, Baitadi, NEPAL
3   Gokuleshwor Agriculture and Animal Science College (GAASC), IAAS, TU, Baitadi, NEPAL
4   Gokuleshwor Agriculture and Animal Science College (GAASC), IAAS, TU, Baitadi, NEPAL
5   Gokuleshwor Agriculture and Animal Science College (GAASC), IAAS, TU, Baitadi, NEPAL
6   National Wheat Research Program, Nepal Agricultural Research Council (NARC), Bhairahawa, Rupandehi, NEPAL

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2024.0901013

doi

Abstract

Selection and release of high yielding and disease resistant varieties is the cost effective and ecologically sound approach for increasing the production and productivity of agricultural crop in Nepal. Twenty-two advanced bread wheat (Triticum aestivum L.) genotypes including commercial check variety "Sorgadwari", newly released check variety "Khumal Shakti" and Local Check variety " Jhadde" were evaluated under irrigated conditions at Gokuleshwor Agriculture and Animal Science College (GAASC), Baitadi, Nepal during 2022/2023. This study was carried out for the identification of high yielding genotypes under irrigated condition in western hills. The experiment was conducted in Alpha lattice design with two replications. The highly significant difference (p<0.01) among the genotypes was found for most of the traits viz., days to heading, days to anthesis, days to maturity, plant height, spikes per square meter, number of grains per spike, grain weight per spike, flag leaf area, thousand kernel weight, biomass yield and grain yield and non-significant difference for spike length. The mean grain yield ranged from 1908 to 4146 kg/ha with grand mean of 2766 kg/ha. The highest grain yield was produced by genotype NL 1474 (4146 kg/ha) which was followed by NL 1475 (3994 kg/ha), NL1597 (3536 kg/ha) and NL 1590 (3070 kg/ha). The check variety Sorgadwari and Khumal Shakti produced 3480 and 3070 kg/ha respectively while the local check variety Jhadde produced 2655 kg/ha. Similarly, highest TKW was produced by NL 1487 (68.5 g) followed by BL 5148 (67.2 g) and WK 3730 (66.3 g). The correlation analysis revealed that grain yield showed highly significant positive correlation with biomass yield (0.90**) and number of grains per spike (0.6**), spikes per square meter (0.7**), plant height (0.5**) and non-significant positive correlation with spike length (0.21) and grain weight per spike (0.1) and non-significant negative correlation with days to heading (-0.2) and days to maturity (-0.2). Cluster analysis revealed that Cluster III consists of 4 genotypes namely NL 1474, NL 1475, NL 1597 and Sorgadwari. This cluster represent with highest grain yield, number of spikes per meter square, number of grains per spike and grain weight per spike. Among the tested genotypes, NL 1474, NL 1475, NL 1597 and NL 1590 were found superior for grain yield and yield-related traits in comparison to three checks and could be recommended for hills of Sudurpaschim province after further testing in multi-environment and in farmer's field.

Keywords:

Cluster, Correlation, Environment, Production and Selection

Downloads

Download data is not yet available.

References

Adhikari, C., Adhikary, B., Rajbhandari, N. P., Hooper, M., Upreti, H. K., Gyawali, B. K., Rajbhandari, N. K., & Hobbs, P. R. (1999). Wheat and Rice in the Mid-Hills of Nepal: A Benchmark Report CIMMYT on Farm Resources and Production Practices in Kavre District. https://repository.cimmyt.org/xmlui/bitstream/handle/10883/3937/68337.pdf

Ali, N., Hussain, I., Ali, S., Khan, N. U., & Hussain, I. (2021). Multivariate analysis for various quantitative traits in wheat advanced lines. Saudi Journal of Biological Sciences, 28(1), 347–352. https://doi.org/10.1016/j.sjbs.2020.10.011

Aryal, J. P., Rahut, D. B., & Gartaula, H. N. (2021). Gendered Analysis of Food Security Gaps in Rural Nepal. August, 23.

Castagnetti, F., Bhatta, J., & Greene, A. (2021). An Offering of Grain: The Agricultural and Spiritual Cycle of a Food System in the Kailash Sacred Landscape, Darchula, Far Western Nepal. Frontiers in Sustainable Food Systems, 5(March). https://doi.org/10.3389/fsufs.2021.646719

CIAT, Bank, W., CCAFS, & LI-BIRD. (2017). Climate-Smart Agriculture in Nepal. CSA Country Profiles for Asia Series. International Center for Tropical Agriculture (CIAT); The World Bank; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS); Local Initiatives for Biodiver. CSA Country Profiles for Asia Series, 26.

Devkota, S., & Upadhyay, M. (2013). Agricultural Productivity and Poverty Reduction in Nepal. Review of Development Economics, 17(4), 732–746.

https://doi.org/10.1111/rode.12062

Dukamo, B. H., Gedebo, A., Tesfaye, B., & Degu, H. D. (2023). Genetic diversity of Ethiopian durum wheat (T. turgidum subsp. durum) landraces under water stressed and non stressed conditions. Heliyon, 9(7), e18359. https://doi.org/10.1016/j.heliyon.2023.e18359

Farnworth, C. R., Jafry, T., Lama, K., Nepali, S. C., & Badstue, L. B. (2019). From Working in the Wheat Field to Managing Wheat: Women Innovators in Nepal. European Journal of Development Research, 31(2), 293–313. https://doi.org/10.1057/s41287-018-0153-4

Garapaty, R., Majumder, R., Thapa, D., Upadhyay, S. R., Baidya, S., Basnet, R., Bhandari, D., Gade, P., Paranjape, V., Killian, A., Vijayaraghavan, V. K., & Acevedo, M. (2021). DNA fingerprinting at farm level to map wheat variety adoption across Nepal. Crop Science, 61(5), 3275–3287. https://doi.org/10.1002/csc2.20497

Guo, Z., Zhao, Y., Röder, M. S., Reif, J. C., Ganal, M. W., Chen, D., & Schnurbusch, T. (2018). Manipulation and prediction of spike morphology traits for the improvement of grain yield in wheat. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-31977-3

Hussain, B., Akpınar, B. A., Alaux, M., Algharib, A. M., Sehgal, D., Ali, Z., Aradottir, G. I., Batley, J., Bellec, A., Bentley, A. R., Cagirici, H. B., Cattivelli, L., Choulet, F., Cockram, J., Desiderio, F., Devaux, P., Dogramaci, M., Dorado, G., Dreisigacker, S., & Budak, H. (2022). Capturing Wheat Phenotypes at the Genome Level. Frontiers in Plant Science, 13(July). https://doi.org/10.3389/fpls.2022.851079

Ikram-ul-Haq, Ghaffar, Y., Ashraf, W., Akhtar, N., Zeshan, M. A., Ghani, M. U., Fatima, S., Ansari, M. J., Alfarraj, S., & Maqbool, A. (2022). Estimation of statistical parameters in candidate wheat genotypes for yield-related traits. Journal of King Saud University - Science, 34(8), 102364. https://doi.org/10.1016/j.jksus.2022.102364

Khadka, K., Torkamaneh, D., Kaviani, M., Belzile, F., Raizada, M. N., & Navabi, A. (2020). Population structure of Nepali spring wheat (Triticum aestivum L.) germplasm. BMC Plant Biology, 20(1), 1–12. https://doi.org/10.1186/s12870-020-02722-8

Khan, M. I., Kainat, Z., Maqbool, S., Mehwish, A., Ahmad, S., Suleman, H. M., Mahmood, Z., Ali, M., Aziz, A., Rasheed, A., & Li, H. (2022). Genome-wide association for heat tolerance at seedling stage in historical spring wheat cultivars. Frontiers in Plant Science, 13(August), 1–12. https://doi.org/10.3389/fpls.2022.972481

Khyber, J. A., Soomro, F., Sipio, W. D., Baloch, A. W., Soothar, J. K., Sootahar, M. K., & Ali, Z. (2019). Evaluation of Bread Wheat (Triticum aestivum L.) Genotypes for Drought Tolerance through Selection Indices. Journal of Horticulture and Plant Research, 7, 40–52. https://doi.org/10.18052/www.scipress.com/jhpr.7.40

Lin, Y., Yi, X., Tang, S., Chen, W., Wu, F., Yang, X., Jiang, X., Shi, H., Ma, J., Chen, G., Chen, G., Zheng, Y., Wei, Y., & Liu, Y. (2019). Dissection of Phenotypic and Genetic Variation of Drought Related Traits in Diverse Chinese Wheat Landraces. The Plant Genome, 12(3), 190025. https://doi.org/10.3835/plantgenome2019.03.0025

Liu, K., Xu, H., Liu, G., Guan, P., Zhou, X., Peng, H., Yao, Y., Ni, Z., Sun, Q., & Du, J. (2018). QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 131(4), 839–849. https://doi.org/10.1007/s00122-017-3040-z

Mdluli, S. Y., Shimelis, H., & Mashilo, J. (2020). Screening for pre- and post-anthesis drought responses in selected bread wheat (Triticum aestivum L.) genotypes. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 70(4), 272–284. https://doi.org/10.1080/09064710.2020.1725105

MoALD. (2022). Statistical Infromation on Nepalese Agriculture 2078/79. Government of Nepal, Ministry of Agricultural Development, Agribusiness Promotion and Statistics Division, Agri Statistics Section: Kathmandu, Nepal.

Molero, G., & Reynolds, M. P. (2020). Spike photosynthesis measured at high throughput indicates genetic variation independent of flag leaf photosynthesis. Field Crops Research, 255, 107866. https://doi.org/10.1016/j.fcr.2020.107866

Mwadzingeni, L., Shimelis, H., Tesfay, S., & Tsilo, T. J. (2016). Screening of Bread Wheat Genotypes for Drought Tolerance Using Phenotypic and Proline Analyses. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01276

Pant, K., Pandey, D., Bastola, B., Subedi, M., Acharya, R., Gautam, N., Dhami, N., Gupt, S., Pandey, B., Thapa Kshetri, D., & Basnet, R. (2023). Wheat Varietal Development for the Mid and High Hill region of Nepal. Proceedings of 32nd National Winter Crop Workshop, January.

Pour-Aboughadareh, A., Kianersi, F., Poczai, P., & Moradkhani, H. (2021). Potential of wild relatives of wheat: Ideal genetic resources for future breeding programs. Agronomy, 11(8), 1–31. https://doi.org/10.3390/agronomy11081656

Rezzouk, F. Z., Gracia-Romero, A., Kefauver, S. C., Nieto-Taladriz, M. T., Serret, M. D., & Araus, J. L. (2022). Durum wheat ideotypes in Mediterranean environments differing in water and temperature conditions. Agricultural Water Management, 259(June 2021). https://doi.org/10.1016/j.agwat.2021.107257

Sheoran, S., Jaiswal, S., Kumar, D., Raghav, N., Sharma, R., Pawar, S., Paul, S., Iquebal, M. A., Jaiswar, A., Sharma, P., Singh, R., Singh, C. P., Gupta, A., Kumar, N., Angadi, U. B., Rai, A., Singh, G. P., Kumar, D., & Tiwari, R. (2019). Uncovering genomic regions associated with 36 agro-morphological traits in Indian spring wheat using GWAS. Frontiers in Plant Science, 10(April). https://doi.org/10.3389/fpls.2019.00527

Subedi, R., Karki, M., & Panday, D. (2020). Food system and water energy biodiversity nexus in nepal: A review. Agronomy, 10(8), 1–19. https://doi.org/10.3390/agronomy10081129

Published

2024-03-25

How to Cite

Nainabasti, A., Subedi, B., Thapa, D. S., Bohora, K. B., Shah, M. K., & Pant, K. R. (2024). Evaluation of elite spring wheat genotypes for grain yield and other agronomic attributes in hills of Sudurpaschim Province, Nepal. Archives of Agriculture and Environmental Science, 9(1), 85-92. https://doi.org/10.26832/24566632.2024.0901013

Issue

Section

Research Articles