Bio-fortified maize: Cornerstone in plant breeding to combat hidden hunger in developing countries
Abstract
Malnutrition has been one of the major global health problems mainly in underdeveloped and developing world causing massive economic damage as well as distressing human life. Deficiency of useful micronutrients like vitamins and minerals including low level of availability of better quality protein causes hidden hunger which can be alleviate with the help of genetic bio-fortification of crops. Besides all the challenges, biofortified maize crops like quality protein maize along with the provitamin A and Zn hold a great future to address the malnutrition challenge combating the deficiency of malnutrtients. This is the most sustainable, cost-effective and potentially wide-reaching approach which can bridge the gap between agriculture and nutrition. Biofortification can be achieved both by agronomic and genetic approaches. The Importance, genetics and potential of bio-fotification is thoroughly reviewed to provide useful findings for new readers and researchers.
Keywords:
Bio-fortification, Malnutrition, Provitamin A and ZnDownloads
References
Akalu, G., Taffesse, S., Gunaratna, N. S., & De Groote, H. (2010). The effectiveness of quality protein maize in improving the nutritional status of young children in the Ethiopian highlands. Food and Nutrition Bulletin, 31(3), 418–430, https://doi.org/10.1177/156482651003100304
Azmach, G., Gedil, M., Menkir, A., & Spillane, C. (2013). Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Biology, 13(1), 227.
Babu, R., Rojas, N. P., Gao, S., Yan, J., & Pixley, K. (2013). Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theoretical and Applied Genetics, 126(2), 389–399, https://doi.org/10.1007/s00122-012-1987-3
Black, M. M. (2003). Micronutrient deficiencies and cognitive functioning. The Journal of Nutrition, 133(11), 3927S-3931S.
Bouis, H. E., & Saltzman, A. (2017). Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Global food Security, 12, 49-58.
Bouis, H. E., & Welch, R. M. (2010). Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science, 50, S-20.
Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin, 32(1_suppl 1, S31-S40, https://doi.org/10.1177/15648265110321s105
Chandler, K., Lipka, A. E., Owens, B. F., Li, H., Buckler, E. S., Rocheford, T., & Gore, M. A. (2013). Genetic analysis of visually scored orange kernel color in maize. Crop Science, 53(1), 189-200.
De Groote, H., Gunaratna, N. S., Ergano, K., & Friesen, D. (2010). Extension and adoption of biofortified crops: Quality protein maize in East Africa (No. 308-2016-5035).
De Groote, Hugo, Chege, C. K., Tomlins, K., & Gunaratna, N. S. (2014). Combining experimental auctions with a modified home-use test to assess rural consumers’ acceptance of quality protein maize, a biofortified crop. Food Quality and Preference, 38, 1-13, https://doi.org/10.1016/j.foodqual.2014.04.014
Denic, M., Chauque, P., Fato, P., Senete, C., Mariote, D., & Haag, W. (2007). Breeding approaches in simultaneous selection for multiple stress tolerance of maize in tropical environments. Genetika, 39(2), 113–124, https://doi.org/10.2298/gensr0702113d
Dhliwayo, T., Palacios Rojas, N., Crossa, J., & Pixley, K. V. (2014). Effects of S1 recurrent selection for provitamin A carotenoid content for three open‐pollinated maize cultivars. Crop Science, 54(6), 2449-2460.
FAO (Food and Agricultural Organization of the United Nations), 2020. Statistical database. (accessed 2020-07-18).
FAOSTAT. (2013). Agricultural statistics database. Rome: World Agricultural. Information Center. Disponível em< http://faostat. Fao . org/site/567/DesktopDefault. Aspx.
FAOSTAT. (2018). Available online: http://www. fao. org/faostat/en/# data. QC (accessed on January 20 Faostat, F. A. O. (2018). Available online:
http://www. fao. org/faostat/en/# data. QC (accessed on January 2019).18).
FAOSTAT. (2018). Retrieved 02,24,2020, from Statistics Division, Food and Agriculture Organization of the United Nations. www.fao.org/faostat/en/#data.
Gannon, B., Kaliwile, C., Arscott, S. A., Schmaelzle, S., Chileshe, J., Kalungwana, N., & Tanumihardjo, S. A. (2014). Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: a community-based, randomized placebo-controlled trial. The American Journal of Clinical Nutrition, 100(6), 1541-1550, https://doi.org/10.3945/ajcn.114.087379.Ensuring
Garg, M., Sharma, N., Sharma, S., Kapoor, P., Kumar, A., Chunduri, V., & Arora, P. (2018). Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition, 5, 12.
Ghosh, S., Suri, D., & Uauy, R. (2012). Assessment of protein adequacy in developing countries: quality matters. British Journal of Nutrition, 108(S2), S77-S87. https://doi.org/10.1017/S0007114512002577
Gupta, H. S., Hossain, F., & Muthusamy, V. (2015). Biofortification of maize: An Indian perspective. Indian J. Genet, 75(1), 1-22.
Gupta, H. S., Hossain, F., Muthusamy, V., & Zunjare, R. U. (2019). Marker-assisted breeding for enrichment of provitamin A in maize. In Quality breeding in field crops, Springer, Cham. pp. 139-157
Gupta, H. S., Raman, B., Agrawal, P. K., Mahajan, V., Hossain, F., & Thirunavukkarasu, N. (2013). Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breeding, 132(1), 77–82, https://doi.org/10.1111/pbr.12009
Harjes, C. E., Rocheford, T. R., Bai, L., Brutnell, T. P., Kandianis, C. B., Sowinski, S. G., & Yan, J. (2008). Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 319(5861), 330-333.
Hossain, F., Muthusamy, V., Bhat, J. S., Jha, S. K., Zunjare, R., Das, A., & Kumar, R. (2016). Maize. In Broadening the Genetic Base of Grain Cereals (pp. 67-88). Springer, New Delhi. https://doi.org/10.1007/978-81-322-3613-9
Issa, A. (2018). CIMMYT’ s Maize Innovations and Interventions in South Asia. 34, [Presentation]. https://repository.cimmyt.org/bitstream/handle/10883/20021/60148.pdf?sequence=1
Kirthee, P., Muthulisi, S., John, D., & Frederick, J. V. (2013). Influence of biofortification with provitamin A on protein, selected micronutrient composition and grain quality of maize. African Journal of Biotechnology, 12(34), 5285–5293, https://doi.org/10.5897/ajb12.2920
Kondwakwenda, A. K. (2018). Provitamin A maize biofortification in sub-Saharan Africa. Maydica, 63(3), 9.
Kumar, S., Palve, A., Joshi, C., Srivastava, R. K., & Rukhsar. (2019). Crop biofortification for iron (Fe), zinc (Zn) and vitamin A with transgenic approaches. Heliyon, 5(6), e01914, https://doi.org/10.1016/j.heliyon.2019.e01914
Kurilich, A. C., & Juvik, J. A. (1999). Quantification of Carotenoid and Tocopherol Antioxidants in Zea mays. Journal of Agricultural and Food Chemistry, 47(5), 1948-1955.
Maqbool, M. A., & Beshir, A. R. (2019). Zinc biofortification of maize (Zea mays L.): Status and challenges. Plant Breeding, 138(1), 1–28,
https://doi.org/10.1111/pbr.12658
Maqbool, M. A., Khan, S., Aslam, M., & Beshir, A. (2018). Breeding for provitamin A biofortification of maize (Zea mays L.). 451–469, https://doi.org/10.1111/pbr.12618
Menkir, A., Palacios-Rojas, N., Alamu, O., Dias Paes, M. C., Dhliwayo, T., Maziya-Dixon, B., & Rocheford, T. (2018). Vitamin A-biofortified maize: exploiting native genetic variation for nutrient enrichment (No. 2187-2019-667).
Mertz, E. T., Bates, L. S., & Nelson, O. E. (1964). Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science, 145(3629), 279-280, https://www.fas.usda.gov/commodities/corn
MoAC (2005): Statistical information on Nepalese agriculture. Agri-business promotion and statistic division, Ministry of Agriculture and Co-operatives, Singha Darbar, Kathmandu, Nepal.
MoAC (2013). Statistical Information on Nepalese Agriculture. Government of Nepal Ministry of Agricultural Development Agribusiness Promotion and Statistics Division Agri Statistics section Singha Durbar, Kathmandu Nepal. 2013.
MoAC (Ministry of agriculture and Cooperatives). 2008. Selected indicators of Nepalese agriculture and population. Agribusiness promotion and statistical division/Gender equity and environment division, Ministry of Agriculture and Cooperatives (MOAC), Singha Durbar, Kathmandu, Nepal.
MoAC (Ministry of Agriculture and Cooperatives).. 2009. Statistical information on Nepalese agriculture (2008/09), Agribusiness promotion and statistical division, Ministry of Agriculture and Cooperatives (MOAC), Singha Durbar, Kathmandu, Nepal available on http://www.moac.gov.np/publications/statistics/new/New%20Cereal%20Crops.pdf.
Nayava, J. L. (2010). Impact of climate change on production and productivity: A case study of maize research and development in Nepal. Journal of Agriculture and Environment, 11, 59-69, https://doi.org/10.3126/aej.v11i0.3653
Owens, B. F., Lipka, A. E., Magallanes-Lundback, M., Tiede, T., Diepenbrock, C. H., Kandianis, C. B., & Buckler, E.S. (2014). A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics, 198(4), 1699-1716, https://doi.org/10.1534/genetics.114.169979
Paudyal, K. R. (2001). Maize in Nepal: production systems, constraints, and priorities for research. CIMMYT.
Pillay, K., Derera, J., Siwela, M., & Veldman, F. J. (2011). Consumer acceptance of yellow, provitamin A-biofortified maize in KwaZulu-Natal. South African Journal of Clinical Nutrition, 24(4), 186-191, https://doi.org/10.1080/16070658.2011.11734386
Pillay, K., Siwela, M., Derera, J., & Veldman, F. J. (2014). Provitamin A carotenoids in biofortified maize and their retention during processing and preparation of South African maize foods. Journal of food science and technology, 51(4), 634-644, https://doi.org/10.1007/s13197-011-0559-x
Pixley, K. V., Palacios-Rojas, N., Babu, R., Mutale, R., Surles, R., & Simpungwe, E. (2013). Biofortification of maize with provitamin A carotenoids In: Tanumihardjo SA editor. Carotenoids in human health. New York: Springer Science and Business Media; pp. 271-92, https://doi.org/10.1007/978-1-62703-203-2
Prasanna, B M, Vivek, B., Sadananda, A. R., Jeffers, D. P., Zaidi, P. H., Boeber, C., Erenstein, O., Babu, R., Nair, S. K., & Gerard, B. (2014). 12th Asian Maize Conference and Expert Consultation on maize for food, feed, nutrition; and environmental security; Bangkok (Thailand), 30-1 Aug-Nov 2014: extended summaries.
Prasanna, Boddupalli M., Palacios-Rojas, N., Hossain, F., Muthusamy, V., Menkir, A., Dhliwayo, T., Ndhlela, T., San Vicente, F., Nair, S. K., Vivek, B. S., Zhang, X., Olsen, M., & Fan, X. (2020). Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. Frontiers in Genetics, 10(February), 1–16. https://doi.org/10.3389/fgene.2019.01392
Priya, S., Anjana, P., & Major, S. (2013). Identification of the RAPD Marker linked to Powdery Mildew Resistant Gene (s) in Black Gram by using Bulk Segregant Analysis. Research Journal of Biotechnology, 8(2), 9-15.
Qaim, M., Stein, A. J., & Meenakshi, J. V. (2007). Economics of biofortification. Agricultural Economics, 37, 119-133.
Qaim, M., Stein, A. J., & Meenakshi, J. V. (2007). Economics of biofortification. Agricultural Economics, 37, 119-133, https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1574-0862.2007.00239.x
Ranum, P., PeñaRosas, J. P., & GarciaCasal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the new York academy of
sciences, 1312(1),105-112, https://doi.org/10.1111/nyas.12396
Rosegrant, M. R., Ringler, C., Sulser, T. B., Ewing, M., Palazzo, A., Zhu, T., & Batka, M. (2009). Agriculture and food security under global change: Prospects for 2025/2050. International Food Policy Research Institute, Washington, DC, 145-178.
Saltzman, A., Birol, E., Oparinde, A., Andersson, M. S., AsareMarfo, D., Diressie, M. T., & Zeller, M. (2017). Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Annals of the New York Academy of Sciences, 1390(1), 104-114, https://doi.org/10.1111/nyas.13314
Sapkota, D., & Pokhrel, S. (2013). Community based maize seed production in the hills and mountains of Nepal: A review. Agronomy Journal of Nepal, 1, 107–112, https://doi.org/10.3126/ajn.v1i0.7550
Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307, https://doi.org/10.1007/s12571-011-0140-5
Shrestha, J., Kunwar, C. B., Upadhyaya, J., Giri, M., Katuwal, R. B., Acharya, R., Bahadur Gurung, S., Adhikari, B. N., Paudel, A. P., & Paneru, R. B. (2016). Genotype × environment interactin of quality protein maize grain yield in Nepal. Journal of Maize Research and Development, 66–73.
Suwarno, W. B., Pixley, K. V., PalaciosRojas, N., Kaeppler, S. M., & Babu, R. (2014). Formation of heterotic groups and understanding genetic effects in a provitamin A biofortified maize breeding program. Crop Science, 54(1), 14-24.
Thapa, G., Gautam, S., Rahut, D. B., & Choudhary, D. (2020). Cost advantage of biofortified maize for the poultry feed industry and its implications for value chain actors in Nepal. Journal of International Food & Agribusiness Marketing, 1-25, https://doi.org/10.1080/08974438.2020.1780179
USDA. (2020). Wheat export by countries. http://www.worldstopexports.com/wheat-imports-by-country. https://knoema.com/atlas/Nepal/topics/Agriculture/Crops-Production-Quantity-tonnes/Maize-production
Vasal, S. K., Villegas, E., Bjarnason, M., Gelaw, B., & Goertz, P. (1980). Genetic modifiers and breeding strategies in developing hard endosperm opaque-2 materials. Genetic modifiers and breeding strategies in developing hard endosperm opaque-2 materials., 37-73.
Watson, S. A. (1962). The yellow carotenoid pigments of corn. In 17th Hybrid Corn Industry Res Conf. American Seed Trade Association, Chicago, Ill (pp. 92-100).
Weber, E. J. (1987). Carotenoids and tocols of corn grain determined by HPLC. Journal of the American Oil Chemists' Society, 64(8), 1129-1134, http://www.fao.org/faostat/en/#data/QC.
Yan, J., Kandianis, C. B., Harjes, C. E., Bai, L., Kim, E. H., Yang, X., & Fernandez, M. G. S. (2010). Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nature Genetics, 42(4), 322-327, https://doi.org/10.1038/ng.551
Zipprian, C. (1999). Economics of SR. NACE - International Corrosion Conference Series, 1999-April.
Zunjare, R. U., Hossain, F., Muthusamy, V., Baveja, A., Chauhan, H. S., Bhat, J. S., & Gupta, H. S. (2018). Development of biofortified maize hybrids through marker-assisted stacking of β-carotene hydroxylase, lycopene-ε-cyclase and opaque2 genes. Frontiers in Plant Science, 9, 178, https://doi.org/10.3389/fpls.2018.00178
Published
How to Cite
Issue
Section
Copyright (c) 2021 Agriculture and Environmental Science Academy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.