Screening microsatellite markers for establishing parental polymorphism in Indian rice (Oryza sativa L.)

Sharmishta Hangloo 1 , Gazi Muhammad Abdullah Mahdi 2 , Romesh Kumar Salgotra 3 , Manmohan Sharma 4

1   School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha - 180009, INDIA
2   School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha - 180009, INDIA
3   School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha - 180009, INDIA
4   School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha - 180009, INDIA

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2022.0704017

doi

Abstract

The experiment was conducted to investigate the parental diversity along the rice genome and to understand and screen out the SSR markers-indicated polymorphism between two indica rice (Oryza sativa L.) cultivars. Namely K343, the most well-liked rice variety in the hill zone of the Jammu Region, and RML22, a rice line created at IRRI, Philippines. The study is to select polymorphic markers (Simple Sequence Repeat- SSR) associated with hill ecologies rice cultivars and additional research projects like gene pyramiding and background selection to recover the recurrent parent genome (RPG) in blast gene introgression in elite lines. 450 SSR markers, evenly distributed throughout the rice genome, were used to assess the parental polymorphism between these genotypes. Of these two cultivars, 51 markers (11.33%) showed polymorphism with bands in different spectrums throughout the genome. The study has been used to Marker Assisted Backcross (MAB) breeding to integrate rice blast resistance genes in the parental genotype. The pool of polymorphic markers has the potential to use in similar studies and work, with a high probability of polymorphism for the cultivars of hill ecologies, and thus increase the chance of selection of probability in marker selection.

Keywords:

Marker assisted backcross (MAB), Parental Polymorphism, Recurrent parent genome (RPG), SSR markers

Downloads

Download data is not yet available.

References

Agarwal, M., Shrivastava, N., & Padh, H. (2008). Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports, 27(4), 617–631, https://doi.org/10.1007/S00299-008-0507-Z

Chen, Z., Zhao, W., Zhu, X., Zou, C., Yin, J., Chern, M., Zhou, X., Ying, H., Jiang, X., Li, Y., Liao, H., Cheng, M., Li, W., He, M., Wang, J., Wang, J., Ma, B., Wang, J., Li, S., & Chen, X. (2018). Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis. Journal of Genetics and Genomics, 45(12), 663–672, https://doi.org/10.1016/j.jgg.2018.10.007

Choudhary, G., Ranjitkumar, N., Surapaneni, M., Deborah, D. A., Vipparla, A., Anuradha, G., Siddiq, E. A., & Vemireddy, L. R. (2013). Molecular Genetic Diversity of Major Indian Rice Cultivars over Decadal Periods. PLOS ONE, 8(6), e66197. https://doi.org/10.1371/JOURNAL.PONE.0066197

Clarke, J. D. (2009). Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harbor Protocols, 2009(3). https://doi.org/10.1101/PDB.PROT5177

Divya, B., Robin, S., Rabindran, R., Senthil, S., Raveendran, M., & Joel, A. J. (2014). Marker assisted backcross breeding approach to improve blast resistance in Indian rice (Oryza sativa) variety ADT43. Euphytica, 200(1), 61–77, https://doi.org/10.1007/s10681-014-1146-9

Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15, https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Isolation+of+plant+DNA+from+fresh+tissue.+Focus+12%3A13&btnG=

Feng, Y., Lu, Q., Zhai, R., Zhang, M., Xu, Q., Yang, Y., Wang, S., Yuan, X., Yu, H., Wang, Y., & Wei, X. (2016). Genome wide association mapping for grain shape traits in indica rice. Planta, 244(4), 819–830, https://doi.org/10.1007/S00425-016-2548-9/FIGURES/7

Flint-Garcia, S. A., Thuillet, A. C., Yu, J., Pressoir, G., Romero, S. M., Mitchell, S. E., Doebley, J., Kresovich, S., Goodman, M. M., & Buckler, E. S. (2005). Maize association population: a high-resolution platform for quantitative trait locus dissection. The Plant Journal, 44(6), 1054–1064, https://doi.org/10.1111/J.1365-313X.2005.02591.X

Gaikwad, K. B., Singh, N., Bhatia, D., Kaur, R., Bains, N. S., Bharaj, T. S., & Singh, K. (2014). Yield-Enhancing Heterotic QTL Transferred from Wild Species to Cultivated Rice Oryza sativa L. PLOS ONE, 9(6), e96939. https://doi.org/10.1371/JOURNAL.PONE.0096939

Gawenda, I., Schröder-Lorenz, A., & Debener, T. (2012). Markers for ornamental traits in Phalaenopsis orchids: population structure, linkage disequilibrium and association mapping. Molecular breeding, 30(1), 305-316, https://doi.org/10.1007/S11032-011-9620-8

Gnanamanickam, S. S. (2009). Rice and Its Importance to Human Life. Biological Control of Rice Diseases, 1–11, https://doi.org/10.1007/978-90-481-2465-7_1

Gopalakrishnan, S., Sharma, R. K., Anand Rajkumar, K., Joseph, M., Singh, V. P., Singh, A. K., Bhat, K. V., Singh, N. K., & Mohapatra, T. (2008). Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breeding, 127(2), 131–139, https://doi.org/10.1111/j.1439-0523.2007.01458.x

Huang, X., Yang, S., Gong, J., Zhao, Y., Feng, Q., Gong, H., Li, W., Zhan, Q., Cheng, B., Xia, J., Chen, N., Hao, Z., Liu, K., Zhu, C., Huang, T., Zhao, Q., Zhang, L., Fan, D., Zhou, C., Han, B. (2015). Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 6(1), 1–9, https://doi.org/10.1038/ncomms7258

Jindal, M. M., Sharma, I., & Bains, N. S. (2012). Losses due to stripe rust caused by Puccinia striiformis in different varieties of wheat. Journal of Wheat Research, 4(2), 33–36.

Leegood, R. C., Evans, J. R., & Furbank, R. T. (2010). Food security requires genetic advances to increase farm yields. Nature, 464(7290), 831–831, https://doi.org/10.1038/464831d

Liang, T., Chi, W., Huang, L., Qu, M., Zhang, S., Chen, Z. Q., Chen, Z. J., Tian, D., Gui, Y., Chen, X., Wang, Z., Tang, W., & Chen, S. (2020). Bulked segregant analysis coupled with whole-genome sequencing (BSA-Seq) mapping identifies a novel pi21 haplotype conferring basal resistance to rice blast disease. International Journal of Molecular Sciences, 21(6), 2162. https://doi.org/10.3390/ijms21062162

Neeraja, C. N., Hariprasad, A. S., Malathi, S., & Siddiq, E. A. (2005). Characterization of tall landraces of rice (Oryza sativa L.) using gene-derived simple sequence repeats. Current Science, 149-152, https://www.jstor.org/stable/24110106

Raboin, L. M., Ballini, E., Tharreau, D., Ramanantsoanirina, A., Frouin, J., Courtois, B., & Ahmadi, N. (2016). Association mapping of resistance to rice blast in upland field conditions. Rice, 9(1), 1–12, https://doi.org/10.1186/S12284-016-0131-4/TABLES/1

Rajendrakumar, P., Biswal, A. K., Balachandran, S. M., Srinivasarao, K., & Sundaram, R. M. (2007). Simple sequence repeats in organellar genomes of rice: Frequency and distribution in genic and intergenic regions. Bioinformatics, 23(1), 1–4, https://doi.org/10.1093/bioinformatics/btl547

Rani, M. G., & Adilakshmi, D. (2011). Genetic analysis of blast resistance in rice with simple sequence repeats (SSR). Journal of Crop Improvement, 25(3), 232–238, https://doi.org/10.1080/15427528.2011.555834

Rathour, R., Chopra, M., & Sharma, T. R. (2008). Development and validation of microsatellite markers linked to the rice blast resistance gene Pi-z of Fukunishiki and Zenith. Euphytica, 163(2), 275–282, https://doi.org/10.1007/s10681-008-9646-0

Sarao, N. K., Vikal, Y., Singh, K., Joshi, M. A., & Sharma, R. C. (2010). SSR marker-based DNA fingerprinting and cultivar identification of rice (Oryza sativa L.) in Punjab state of India. Plant Genetic Resources, 8(1), 42-44, https://doi.org/10.1017/S1479262109990128

Sharma, T. R., Madhav, M. S., Singh, B. K., Shanker, P., Jana, T. K., Dalal, V., Pandit, A., Singh, A., Gaikwad, K., Upreti, H. C., & Singh, N. K. (2005). High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Molecular Genetics and Genomics, 274(6), 569–578, https://doi.org/10.1007/s00438-005-0035-2

Shen, Y. J., Jiang, H., Jin, J. P., Zhang, Z. B., Xi, B., He, Y. Y., Wang, G., Wang, C., Qian, L., Li, X., Yu, Q. B., Liu, H. J., Chen, D. H., Gao, J. H., Huang, H., Shi, T. L., & Yang, Z. N. (2004). Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiology, 135(3), 1198–1205, https://doi.org/10.1104/pp.103.038463

Singh, V. K., Singh, A., Singh, S. P., Ellur, R. K., Choudhary, V., Sarkel, S., Singh, D., Krishnan, S. G., Nagarajan, M., Vinod, K. K., Singh, U. D., Rathore, R., Prashanthi, S. K., Agrawal, P. K., Bhatt, J. C., Mohapatra, T., Prabhu, K. V., & Singh, A. K. (2012). Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crops Research, 128, 8–16, https://doi.org/10.1016/j.fcr.2011.12.003

Sundaram, R. M., Vishnupriya, M. R., Biradar, S. K., Laha, G. S., Reddy, G. A., Rani, N. S., & Sonti, R. V. (2008). Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica, 160(3), 411-422, https://doi.org/10.1007/s10681-007-9564-6

Wang, Q. Z., & Zhao, X. M. (2009). Modern Biotechnology in China. Biotechnology in China II, 235-257, https://doi.org/10.1007/10_2008_17

Ying, Z., Tao, W., Bin, Y., Fang, L., Meijuan, C., Qiong, W., Ping, H., Shuyan, K., Wenxiu, Q., & Li, L. (2022). Improving Rice Blast Resistance by Mining Broad-Spectrum Resistance Genes at Pik Locus. Rice Science, 29(2), 133–142, https://doi.org/10.1016/j.rsci.2022.01.002

Zhao, Y., Wang, H., Chen, W., & Li, Y. (2014). Genetic Structure, Linkage Disequilibrium and Association Mapping of Verticillium Wilt Resistance in Elite Cotton (Gossypium hirsutum L.) Germplasm Population. PLOS ONE, 9(1), e86308. https://doi.org/10.1371/JOURNAL.PONE.0086308

Published

2022-12-25

How to Cite

Hangloo, S., Mahdi, G. M. A., Salgotra, R. K. ., & Sharma, M. . (2022). Screening microsatellite markers for establishing parental polymorphism in Indian rice (Oryza sativa L.). Archives of Agriculture and Environmental Science, 7(4), 590-594. https://doi.org/10.26832/24566632.2022.0704017

Issue

Section

Research Articles