Impact of various Rhizobium application methods on production and nodule formation in cowpea

Authors

  • Ashish Dhami Agriculture and Forestry University, 10901, Tikapur, Nepal
  • Ram Chandra Bhatta Gokuleshwor Agriculture and Animal Science College, 10200, Baitadi, Nepal
  • Laxman Datta Bhatta Agriculture and Forestry University, 10901, Tikapur, Nepal
  • Akriti Risal Gokuleshwor Agriculture and Animal Science College, 10200, Baitadi, Nepal

DOI:

https://doi.org/10.26832/24566632.2025.100406

Keywords:

Application method, Cowpea, Interaction, Nodule, Rhizobium inoculation

Abstract

The study aimed to determine the effect of various Rhizobium inoculation methods on the yield, growth, and reproductive characteristics of two cowpea varieties under field conditions in the tropical region of Tikapur, Kailali. With four replications, the study was carried out in a two-factorial Randomized Complete Block Design from April to August of 2024. Four different Rhizobium inoculation methods were tested on two cowpea varieties, Aakash and Prakash: T1 (Control), T2 (seed inoculation), T3 (seed + soil inoculation), and T4 (soil inoculation). The majority of parameters were significantly influenced by the variety, inoculation methods and their interaction. While Aakash showed better physiological growth, the Prakash variety performed better in reproductive attributes and had a greater grain yield (1.39 t/ha). With the highest plant height (92.74 cm), number of leaves (52.75), branches (5.54), effective nodules (84.69), pods per plant (21.29), seeds per pod (12.10), thousand-grain weight (138.95 g), and grain yield (1.98 t/ha), T3 (seed + soil inoculation) regularly outperformed the other treatments. Correlation analysis revealed a significant positive relationship between effective nodulation and yield-related traits. These results indicate that integrated Rhizobium treatment may greatly increase cowpea productivity, especially by combining both seed and soil inoculation. The study offers a cost-effective, promising method for enhancing the performance of legumes, which is particularly advantageous for smallholder farmers. To confirm the scalability and consistency of these findings, the study suggests more extensive long-term research in other agro-ecological zones.

Downloads

Download data is not yet available.

References

Abayomi, Y. A., Ajibade, T. V., Sammuel, O. F., & Saadudeen, B. F. (2008). Growth and yield responses of cowpea (Vigna unguiculata (L.) Walp) genotypes to nitrogen fertilizer (NPK) application in the southern Guinea Savanna zone of Nigeria. Asian Journal of Plant Sciences, 7(2), 170–176. https://doi.org/10.3923/ajps.2008.170.176

Abd-Alla, M. H., Al-Amri, S. M., & El-Enany, A. W. E. (2023). Enhancing Rhizobium–Legume symbiosis and reducing nitrogen fertilizer use are potential options for mitigating climate change. Agriculture, 13(11), 2092. https://doi.org/10.3390/agriculture13112092

Aminu, S. M., Shamsuddeen, U., & Dianda, M. (2015). Effects of inoculation on the growth of soybeans [Glycine max (L.) Merrill] planted in soils from different geographical location in northwestern Nigeria. International Journal of Advances in Science Engineering and Technology, 3(3), 38–42.

Animasaun, D., Animasaun, D. A., Oyedeji, S., Azeez, Y. K., Mustapha, O. T., & Azeez, M. A. (2015). Genetic variability study among ten cultivars of cowpea (Vigna unguiculata L. Walp) using morpho-agronomic traits and nutritional composition. The Journal of Agricultural Sciences, 10(2), 119–130.

Anjum, M. S., Khan, M. A., & Rauf, C. A. (2006). Effect of rhizobium inoculation and nitrogen fertilizer on yield and yield components of mungbean. International Journal of Agriculture and Biology, 8(2), 238–240.

Ayalew, T., Yoseph, T., Petra, H., & Cadisch, G. (2021). Yield response of field‐grown cowpea varieties to Bradyrhizobium inoculation. Agronomy Journal, 113(4), 3258–3268. https://doi.org/10.1002/agj2.20763

Bam, R., Mishra, S. R., Khanal, S., Ghimire, P., & Bhattarai, S. (2022). Effect of biofertilizers and nutrient sources on the performance of mungbean at Rupandehi, Nepal. Journal of Agriculture and Food Research, 10. https://doi.org/10.1016/j.jafr.2022.100404

Belhiba, H. M., Mahdhi, M., Cherif-Smaoui, S., & Mhamdi, R. (2020). Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. Journal of Genetic Engineering and Biotechnology, 18(1), 71. https://doi.org/10.1186/s43141-020-00090-2

Boddey, R. M., Fosu, M., Atakora, W. K., Miranda, C. H. B., Boddey, L. H., Guimaraes, A. P., & Ahiabor, B. D. K. (2017). Cowpea (Vigna unguiculat) crops in Africa can respond to inoculation with Rhizobium. Experimental Agriculture, 53(4), 578–587. https://doi.org/10.1017/S0014479716000594

Carranca, C., Brunetto, G., & Tagliavini, M. (2018). Nitrogen nutrition of fruit trees to reconcile productivity and environmental concerns. Plants, 7(1), 4. https://doi.org/10.3390/plants7010004

Carvalho, M., Lino-Neto, T., Rosa, E., & Carnide, V. (2017). Cowpea: a legume crop for a challenging environment. Journal of the Science of Food and Agriculture, 97(13), 4273–4284. https://doi.org/10.1002/JSFA.8250

Chaulagain, P., Sah, S. K., & Jaishi, A. (2024). Response of Mungbean (Vigna radiata L. Wilczek) to Rhizobium inoculation and Irrigation Schedule in Siraha, Nepal. Agronomy Journal of Nepal, 8, 135–142. https://doi.org/10.3126/ajn.v8i1.70795

Chhetri, T. K., Subedee, B. R., & Pant, B. (2019). Isolation, Identification and Production of Encapsulated Bradyrhizobium japonicum and Study on their Viability. Nepal Journal of Biotechnology, 7(1), 39–49. https://doi.org/10.3126/njb.v7i1.26950

Dahal, N., Ghimire, S., & Poudel, R. (2022). A study on dynamics of major cereal crop production in Nepal. International Journal of Social Sciences and Management, 9(1), 13-18. https://doi.org/10.3126/ijssm.v9i1.42716

Darai, R., Poudel, P., Ghimire, N., & Chadaro, M. B. (2023). Evaluation of yield and yield attributes of seed type cowpea genotypes (Vigna unguiculata (L.) Walp.) in Mid-Western terai of Nepal. Ecology & Conservation Science: Open Access, 2(3). https://doi.org/10.19080/ECOA.2023.02.555587

Darini, M. T., & Astuti, A. (2023). Correlation between Root Nodule Characteristic and Growth Component of Jack Bean Intercropped with Aloe Plant in Calcareous Soil. International Journal on Advanced Science, Engineering and Information Technology, 13(2), 625–631. https://doi.org/10.18517/ijaseit.13.2.10922

Dugje, I. Y., Omoigui, L., Ekeleme, F., & Kamara, A. Y. (2009). Farmers’ Guide to Cowpea Production in West Africa. IITA.

Emmanuel, A., Ejimofor, O. P., Nduka, O. V., Lucky, O., Yahya, K. A., & M’jaika, N. E. (2025). Understanding cowpea yield: A comprehensive analysis of physiological traits’ contribution through path analysis. Agriculture and Food Sciences Research, 12(1), 42–48. https://doi.org/10.20448/aesr.v12i1.6570

Fahde, S., Boughribil, S., Sijilmassi, B., & Amri, A. (2023). Rhizobia: A promising source of plant growth-promoting molecules and their non-legume interactions: Examining applications and mechanisms. Agriculture, 13(7), 1279. https://doi.org/10.3390/agriculture13071279

Guimarães, J. B., Nunes, C., Pereira, G., Gomes, A., Nhantumbo, N., Cabrita, P., Matos, J., Simões, F., & Veloso, M. M. (2023). Genetic diversity and population structure of cowpea (Vigna unguiculata (L.) Walp.) landraces from Portugal and Mozambique. Plants, 12(4), 846. https://doi.org/10.3390/plants12040846

Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., Jayawardana, B. C., Nammi, S., & Liyanage, R. (2018). Cowpea: an overview on its nutritional facts and health benefits. In Journal of the Science of Food and Agriculture, 98(13), 4793–4806. https://doi.org/10.1002/jsfa.9074

Joshi, K., Bhandari, S., Shrestha, S., Sharma, G., Pathak, J., & Joshi, K. (2024). Impact of rhizobium inoculation on legume yield and its relevance in Nepalese cropping system: a review, 3(1), 01-04. https://doi.org/10.26480/aedc.01.2025.01.04

Kandel, S., Sharma, P., Chaudhary, S., & Sapkota, P. (2023). Bio-fertilizer: possibilities and scope in Nepal-a review. In International Journal of Innovative Science and Research Technology, 8(1). https://doi.org/10.5281/zenodo.7527759

Kandil, A. E., & Ünlü, H. Ö. (2023). Effect of Rhizobium inoculation on yield and some quality properties of fresh cowpea. Cogent Food and Agriculture, 9(2). https://doi.org/10.1080/23311932.2023.2275410

Kebede, E. (2021). Competency of rhizobial inoculation in sustainable agricultural production and biocontrol of plant diseases. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.728014

Khanna, R., Pawar, J., Gupta, S., Verma, H., Trivedi, H., Kumar, P., & Kumar, R. (2019). Efficiency of biofertilizers in increasing the production potential of cereals and pulses: A review. Journal of Pharmacognosy and Phytochemistry, 8(2), 183–188.

Khanna, R., Singh, S., & Singh, V. (2019). Effect of varying phosphorus levels and rhizobium inoculation on growth and yield of cow pea (Vigna unguiculata L.). Progressive Research – An International Journal, 14(4), 314-319.

Namakka, A., Jibrin, D. M., Hamma, I. L., & Bulis, J. (2017). Effects of phosphorus levels on growth and yield of cowpea (Vigna unguiculata (L.) (Walp.) in Zaria Nigeria. Journal of Dryland Agriculture, 3(1), 85–93. https://doi.org/10.5897/JODA.9000005

Shrestha, S., Yadav, P. K., Khanal, B. R., Bhujel, P., Neupane, A., Chaudhary, B., & Giri, D. (2023). Effect of Rhizobium leguminosarum Inoculation and Mulching on Growth and Yield of Chinese Long Bean (Vigna unguiculata subsp. sesquipedalis). AgroEnvironmental Sustainability, 1(3), 199–209. https://doi.org/10.59983/s2023010301

Singh, P. K., & Dubey, A. (2024). Cowpea. In Advanced Breeding Approaches in Vegetables. https://doi.org/10.61887/glp.2024.56

Singh, S. P., Singh, S., Dubey, A. N., & Rajput, R. K. (2020). Biofertilizers and plant growth regulators as key player in sustainable agriculture by enhancing soil fertility and crop productivity. In H. Pant, A. R. Siddiqui, N. Mishra, & M. K. Singh (Eds.), Society of Biological Sciences and Rural Development (pp. 12–18).

Sun, X., Chen, F., Yuan, L., & Mi, G. (2020). The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. Planta, 251(4), 84. https://doi.org/10.1007/s00425-020-03376-4

Tan, H., Tie, M., Luo, Q., Zhu, Y., Lai, j, & Li, H. (2012). A review of molecular makers applied in cowpea (Vigna unguiculata L. Walp.) breeding. Journal of Life Sciences, 6(11), 1190–1199.

Thilakarathna, M. S., Chapagain, T., Ghimire, B., Pudasaini, R., Tamang, B. B., Gurung, K., Choi, K., Rai, L., Magar, S., Bk, B., Gaire, S., & Raizada, M. N. (2019). Evaluating the effectiveness of Rhizobium inoculants and micronutrients as technologies for Nepalese common bean smallholder farmers in the real-world context of highly variable hillside environments and indigenous farming practices. Agriculture (Switzerland), 9(1). https://doi.org/10.3390/agriculture9010020

Verma, R., Annapragada, H., Katiyar, N., Shrutika, N., Das, K., & Murugesan, S. (2020). Rhizobium. In Beneficial Microbes in Agro-Ecology (pp. 37–54). Elsevier. https://doi.org/10.1016/B978-0-12-823414-3.00004-6

Downloads

Published

2025-12-25

How to Cite

Dhami, A., Bhatta, R. C., Bhatta, L. D., & Risal, A. (2025). Impact of various Rhizobium application methods on production and nodule formation in cowpea. Archives of Agriculture and Environmental Science, 10(4), 592–599. https://doi.org/10.26832/24566632.2025.100406

Issue

Section

Research Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.