Integrating climate-smart agriculture for sustainable agriculture: Opportunities, challenges and future directions

Bikalpa Neupane 1 , Binita Bhattarai 2 , Lalendra Gurung 3 , Janak Singh Rawal 4 , Ganesh Raj Joshi 5

1   Gokuleshwor Agriculture and Animal Science Collage, Baitadi, Tribhuvan University, Nepal
2   Gokuleshwor Agriculture and Animal Science Collage, Baitadi, Tribhuvan University, Nepal
3   Gokuleshwor Agriculture and Animal Science Collage, Baitadi, Tribhuvan University, Nepal
4   Gokuleshwor Agriculture and Animal Science Collage, Baitadi, Tribhuvan University, Nepal
5   Gokuleshwor Agriculture and Animal Science Collage, Baitadi, Tribhuvan University, Nepal

✉ Coressponding author: See PDF.

doi https://doi.org/10.26832/24566632.2024.090307

doi

Abstract

Climate-smart agriculture (CSA) has emerged as a valuable strategy to address the challenges of food insecurity, climate change, and environmental degradation. This study assesses the impact of six key CSA practices: technologies including water smart, energy smart, nutrient smart, carbon smart, weather smart, and knowledge smart for farming regarding the increasing world population and decreased shift in arable land. This paper employs a literature review and case analysis to demonstrate how these practices improve resource utilization, worsen environmental impacts and strengthen agriculture production systems. Several studies carried out in agriculture have stipulated that water-smart practices can help achieve improvements in water use efficiency by at least 30 percent, nutrient-smart practices can help increase soil health by a range of 20 percent, and carbon-smart practices could reduce greenhouse gas emissions by between 15 percent. This brings us back to the question of the role that CSA can play in support of processes that are directed at realizing the Sustainable Development Goals SDG 2 (Ending Hunger) and SDG 13 (Taking Action on Climate Change) on development processes across the world. However, inefficient and insecure land rights, water deficits, and high initial investment hinder the widespread adoption of the technologies. The consequences are that policies concerning the matters, a well-developed institutional environment, and farmer’s knowledge should be introduced to eliminate these issues. As to further research, the continuous improvements of the models of CSA and the financing of the CSA also need future action research. Overall, CSA offers hope for establishing strong foundations for food security and climate-resilient agricultural systems.

Keywords:

Agricultural resilience, Climate change, Climate-smart agriculture, Food security, Sustainable farming

Downloads

Download data is not yet available.

References

Abdul, A., & Bature, A. (2024). Combating Climate Change with Good Agricultural Practices (GAP) (pp. 118–134).

Abegunde, V. O., Sibanda, M., & Obi, A. (2022). Effect of climate-smart agriculture on household food security in small-scale production systems: A micro-level analysis from South Africa. Cogent Social Sciences, 8(1), 2086343. https://doi.org/10.1080/23311886.2022.2086343

Adli, H., Remli, M. A., Nizar, K., Ismail, N. A., González Briones, A., Corchado, J., & Mohamad, M. (2023). Recent Advancements and Challenges of AIoT Application in Smart Agriculture: A Review. Sensor Review, 23. https://doi.org/10.3390/s23073752

Agrimonti, C., Lauro, M., & Visioli, G. (2021). Smart agriculture for food quality: Facing climate change in the 21st century. Critical Reviews in Food Science and Nutrition, 61(6), 971–981.

https://doi.org/10.1080/10408398.2020.1749555

Aishwarya, & Kumar, P. (2024). A Perspective Way to Climate Smart Agriculture. In P. Kumar & Aishwarya (Eds.), Technological Approaches for Climate Smart Agriculture (pp. 9–24). Springer International Publishing. https://doi.org/10.1007/978-3-031-52708-1_2

Akpabio, E. S., Akeju, K. F., Omotoso, K. O., Ohunakin, F., & Ogundokun, R. O. (2023). Climate Smart Agriculture and Nigeria’s SDG 2 Prospects: A Review. 2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG), 1, 1–6. https://ieeexplore.ieee.org/abstract/document/10124557/

Akter, A., Geng, X., Endelani Mwalupaso, G., Lu, H., Hoque, F., Kiraru Ndungu, M., & Abbas, Q. (2022). Income and yield effects of climate-smart agriculture (CSA) adoption in flood prone areas of Bangladesh: Farm level evidence. Climate Risk Management, 37, 100455. https://doi.org/10.1016/j.crm.2022.100455

Annes, A., Wright, W., & Larkins, M. (2021). ‘A Woman in Charge of a Farm’: French Women Farmers Challenge Hegemonic Femininity. Sociologia Ruralis, 61(1), 26–51. https://doi.org/10.1111/soru.12308

Arif, M., Jan, T., Munir, H., Rasul, F., Riaz, M., Fahad, S., Adnan, M., Mian, I. A., & Amanullah. (2020). Climate-Smart Agriculture: Assessment and Adaptation Strategies in Changing Climate. In V. Venkatramanan, S. Shah, & R. Prasad (Eds.), Global Climate Change and Environmental Policy: Agriculture Perspectives (pp. 351–377). Springer. https://doi.org/10.1007/978-981-13-9570-3_12

Arora, N. K., & Mishra, I. (2023). Sustainable development goal 13: Recent progress and challenges to climate action. Environmental Sustainability, 6(3), 297–301. https://doi.org/10.1007/s42398-023-00287-4

Asare-Nuamah, P. (2021). Climate variability, subsistence agriculture and household food security in rural Ghana. Heliyon, 7(4). https://www.cell.com/heliyon/fulltext/S2405-8440(21)01031-8

Autio, A., Johansson, T., Motaroki, L., Minoia, P., & Pellikka, P. (2021). Constraints for adopting climate-smart agricultural practices among smallholder farmers in Southeast Kenya. Agricultural Systems, 194, 103284.

Aweke, M. G. (2017). Climate-smart agriculture in Ethiopia: CSA country profiles for Africa series. International Center for Tropical Agriculture: Washington, DC, USA.

Balogun, O., Nwahia, O., & Nwebor, E. (2024). Climate-Smart Agriculture for Sustainable Agricultural Development in Nigeria: An Empirical Review.

Journal of Applied Sciences and Environmental Management, 28, 1853–1858. https://doi.org/10.4314/jasem.v28i6.26

Barasa, P., Botai, C., Botai, J., & Mabhaudhi, T. (2021). A Review of Climate-Smart Agriculture Research and Applications in Africa. Agronomy, 11, 1255. https://doi.org/10.3390/agronomy11061255

Barui, P., Ghosh, P., & Debangshi, U. (2022). VERTICAL FARMING - AN OVERVIEW. PLANT ARCHIVES, 22(2), 223–228. https://doi.org/10.51470/PLANTARCHIVES.2022.v22.no2.038

Bhattacharyya, P., Pathak, H., & Pal, S. (2020). Dimensions of Climate-Smart

Agriculture. In P. Bhattacharyya, H. Pathak, & S. Pal (Eds.), Climate Smart Agriculture: Concepts, Challenges, and Opportunities (pp. 33–39). Springer. https://doi.org/10.1007/978-981-15-9132-7_3

Bhusal, A., Khatri, L., Bhandari, B., Sherpa, L., & Neupane, G. (2020). Climate-smart agriculture (CSA): Training manual. http://hdl.handle.net/10625/61175

Bibi, F., & Rahman, A. (2023). An Overview of Climate Change Impacts on Agriculture and their mitigation strategies. https://doi.org/10.20944/preprints202307.1352.v1

Campbell, B. M., Hansen, J., Rioux, J., Stirling, C. M., & Twomlow, S. (2018). Urgent action to combat climate change and its impacts (SDG 13): Transforming agriculture and food systems. Current Opinion in Environmental Sustainability, 34, 13–20.

Campbell, B. M., Thornton, P., Zougmore, R., Van Asten, P. J. A., & Lipper, L. (2014). Sustainable intensification: What is its role in climate smart agriculture? Current Opinion in Environmental Sustainability, 8, 39–43. https://doi.org/10.1016/j.cosust.2014.07.002

Carr, P. M., Cavigelli, M. A., Darby, H., Delate, K., Eberly, J. O., Fryer, H. K., Gramig, G. G., Heckman, J. R., Mallory, E. B., Reeve, J. R., Silva, E. M., Suchoff, D. H., & Woodley, A. L. (2020). Green and animal manure use in organic field crop systems. Agronomy Journal, 112(2), 648–674. https://doi.org/10.1002/agj2.20082

Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287–291. https://doi.org/10.1038/nclimate2153

Chandra, A., McNamara, K. E., & Dargusch, P. (2018). Climate-smart agriculture: Perspectives and framings. Climate Policy, 18(4), 526–541. https://doi.org/10.1080/14693062.2017.1316968

Chen, Z., Xu, C., Ji, L., Feng, J., Li, F., Zhou, X., & Fang, F. (2020). Effects of multi-cropping system on temporal and spatial distribution of carbon and nitrogen footprint of major crops in China. Global Ecology and Conservation, 22, e00895.

Chiemela, S. N., Noulekoun, F., Zenebe, A., Abadi, N., & Birhane, E. (2018). Transformation of degraded farmlands to agroforestry in Zongi Village, Ethiopia. Agroforestry Systems, 92(5), 1317–1328. https://doi.org/10.1007/s10457-017-0076-7

Cogato, A., Meggio, F., De Antoni Migliorati, M., & Marinello, F. (2019). Extreme Weather Events in Agriculture: A Systematic Review. Sustainability, 11(9), Article 9. https://doi.org/10.3390/su11092547

Dong Huan, D. H., Campbell, B., & Rabinowitz, A. N. (2019). Factors impacting producer marketing through community supported agriculture. https://www.cabidigitallibrary.org/doi/full/10.5555/20193379422

Duguma, B., & Janssens, G. P. J. (2021). Assessment of Livestock Feed Resources and Coping Strategies with Dry Season Feed Scarcity in Mixed Crop–Livestock Farming Systems around the Gilgel Gibe Catchment, Southwest Ethiopia. Sustainability, 13(19), Article 19. https://doi.org/10.3390/su131910713

E. Birch, A. N., Begg, G. S., & Squire, G. R. (2011). How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems. Journal of Experimental Botany, 62(10), 3251–3261. https://doi.org/10.1093/jxb/err064

Elad, Y., & Pertot, I. (2014). Climate Change Impacts on Plant Pathogens and Plant Diseases. Journal of Crop Improvement, 28(1), 99–139. https://doi.org/10.1080/15427528.2014.865412

Fausey, N. R. (2005). Drainage management for humid regions. International Agricultural Engineering Journal, 14(4), 209–214.

Fishman, R. (2016). More uneven distributions overturn benefits of higher precipitation for crop yields. Environmental Research Letters, 11(2), 024004. https://doi.org/10.1088/1748-9326/11/2/024004

Gangopadhyay, P. K., Khatri-Chhetri, A., Shirsath, P. B., & Aggarwal, P. K. (2019). Spatial targeting of ICT-based weather and agro-advisory services for climate risk management in agriculture. Climatic Change, 154(1), 241–256. https://doi.org/10.1007/s10584-019-02426-5

Ghosh, M. (2019). Climate-smart agriculture, productivity and food security in India. Journal of Development Policy and Practice, 4(2), 166–187.

Hou, D. (2023). Sustainable soil management for food security. Soil Use and Management, 39(1), 1–7. https://doi.org/10.1111/sum.12883

Imran, M. A., Ali, A., Ashfaq, M., Hassan, S., Culas, R., & Ma, C. (2019). Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton. Land Use Policy, 88, 104113. https://doi.org/10.1016/j.landusepol.2019.104113

Jagustović, R., Papachristos, G., Zougmoré, R. B., Kotir, J. H., Kessler, A., Ouédraogo, M., Ritsema, C. J., & Dittmer, K. M. (2021). Better before worse trajectories in food systems? An investigation of synergies and trade-offs through climate-smart agriculture and system dynamics. Agricultural Systems, 190, 103131.

Janni, M., Maestri, E., Gulli, M., Marmiroli, M., & Marmiroli, N. (2024). Plant responses to climate change, how global warming may impact on food security: A critical review. Frontiers in Plant Science, 14, 1297569. https://doi.org/10.3389/fpls.2023.1297569

Janowiak, M. K., Dostie, D. N., Wilson, M. A., Kucera, M. J., Skinner, R. H., Hatfield, J. L., Hollinger, D., & Swanston, C. W. (2016). Adaptation resources for agriculture: Responding to climate variability and change in the midwest and northeast. https://ageconsearch.umn.edu/record/320856/

Jirata, M., Grey, S., & Kilawe, E. (2016). Ethiopia climate-smart agriculture scoping study. https://www.sidalc.net/search/Record/dig-fao-it-20.500.14283-I5518E/Description

John, D., Hussin, N., Shahibi, M. S., Ahmad, M., Hashim, H., & Ametefe, D. S. (2023). A systematic review on the factors governing precision agriculture adoption among small-scale farmers. Outlook on Agriculture, 52(4), 469–485. https://doi.org/10.1177/00307270231205640

Josephson, A. L., Ricker-Gilbert, J., & Florax, R. J. (2014). How does population density influence agricultural intensification and productivity? Evidence from Ethiopia. Food Policy, 48, 142–152.

Jusoh, F., A, M., M. Firdaus, Krishnan, K., & Katimon, A. (2021). An overview of the internet of things (IoT) and irrigation approach through bibliometric analysis. IOP Conference Series: Earth and Environmental Science, 756, 012041. https://doi.org/10.1088/1755-1315/756/1/012041

Kalantari, F., Tahir, O. M., Joni, R. A., & Fatemi, E. (2018). Opportunities and Challenges in Sustainability of Vertical Farming: A Review. Journal of Landscape Ecology, 11(1), 35–60. https://doi.org/10.1515/jlecol-2017-0016

Khamkhunmuang, T., Punchay, K., Promburom, P., & Wangpakapattanawong, P. (2022). Developing Climate-Smart Agriculture Indicators for SDG 1 and Environmental Implications in Northern Thailand. EnvironmentAsia, 15, 1–13. https://doi.org/10.14456/ea.2022.43

Khatri-Chhetri, A., Aggarwal, P. K., Joshi, P. K., & Vyas, S. (2017). Farmers’ prioritization of climate-smart agriculture (CSA) technologies. Agricultural Systems, 151, 184–191. https://doi.org/10.1016/j.agsy.2016.10.005

Kifle, T. (2021). Climate-Smart Agricultural (CSA) practices and its implications to food security in Siyadebrina Wayu District, Ethiopia. African Journal of Agricultural Research, 17(1), 92–103.

Kiwia, A., Kimani, D., Harawa, R., Jama, B., & Sileshi, G. W. (2019). Sustainable Intensification with Cereal-Legume Intercropping in Eastern and Southern Africa. Sustainability, 11(10), Article 10. https://doi.org/10.3390/su11102891

Kogo, B. K., Kumar, L., & Koech, R. (2021). Climate change and variability in Kenya: A review of impacts on agriculture and food security. Environment, Development and Sustainability, 23(1), 23–43. https://doi.org/10.1007/s10668-020-00589-1

Kumar, D., Pradhan, A., Jain, R., Kumar, V., Murmu, S., Samal, I., & Chaurasia, H. (2024). Remote Sensing in Precision Agriculture: Current Status and Applications (pp. 23–41). https://doi.org/10.1007/978-981-97-0341-8_2

Kumar, S., Rao, D. U. M., Thombare, P., & Kale, P. (2020). Small and marginal farmers of Indian agriculture: Prospects and extension strategies. Indian Research Journal of Extension Education, 20(1), 35–41.

Lee JaeMin, L. J., Kwon EunHye, K. E., & Woo, N. C. (2019). Natural and human-induced drivers of groundwater sustainability: A case study of the Mangyeong River Basin in Korea. https://www.cabidigitallibrary.org/doi/full/10.5555/20193438386

Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., Hottle, R., Jackson, L., Jarvis, A., Kossam, F., Mann, W., McCarthy, N., Meybeck, A., Neufeldt, H., Remington, T., … Torquebiau, E. F. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068–1072. https://doi.org/10.1038/nclimate2437

Lund Schlamovitz, J., & Becker, P. (2021). Differentiated vulnerabilities and capacities for adaptation to water shortage in Gaborone, Botswana. International Journal of Water Resources Development, 37(2), 278–299. https://doi.org/10.1080/07900627.2020.1756752

Ma, W., & Rahut, D. B. (2024). Climate-smart agriculture: Adoption, impacts, and implications for sustainable development. Mitigation and Adaptation Strategies for Global Change, 29(5), 44. https://doi.org/10.1007/s11027-024-10139-z

Mahato, A. (2014). Climate Change and its Impact on Agriculture. 4(4).

Maja, M. M., & Ayano, S. F. (2021). The Impact of Population Growth on Natural Resources and Farmers’ Capacity to Adapt to Climate Change in Low-Income Countries. Earth Systems and Environment, 5(2), 271–283. https://doi.org/10.1007/s41748-021-00209-6

Malhi, G. S., Kaur, M., & Kaushik, P. (2021a). Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability, 13(3), Article 3. https://doi.org/10.3390/su13031318

Malhi, G. S., Kaur, M., & Kaushik, P. (2021b). Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability, 13(3), Article 3. https://doi.org/10.3390/su13031318

Maraseni, T. N., & Qu, J. (2016). An international comparison of agricultural nitrous oxide emissions. Journal of Cleaner Production, 135, 1256–1266.

Matteoli, F., Schnetzer, J., & Jacobs, H. (2020). Climate-Smart Agriculture (CSA): An Integrated Approach for Climate Change Management in the Agriculture Sector. In W. Leal Filho, J. Luetz, & D. Ayal (Eds.), Handbook of Climate Change Management (pp. 1–29). Springer International Publishing. https://doi.org/10.1007/978-3-030-22759-3_148-1

McKinley, J. D., LaFrance, J. T., & Pede, V. O. (2021). Climate change adaptation strategies vary with climatic stress: Evidence from three regions of Vietnam. Frontiers in Sustainable Food Systems, 5, 762650.

Meyer, N., Bergez, J.-E., Constantin, J., Belleville, P., & Justes, E. (2020). Cover crops reduce drainage but not always soil water content due to interactions between rainfall distribution and management. Agricultural Water Management, 231, 105998. https://doi.org/10.1016/j.agwat.2019.105998

Mezgebe, H. (2012). Forage Seed Production and Supply in Tigray. Forage Seed Research and Development in Ethiopia, 219.

Mujeyi, A., Mudhara, M., & Mutenje, M. (2021). The impact of climate smart agriculture on household welfare in smallholder integrated crop–livestock farming systems: Evidence from Zimbabwe. Agriculture & Food Security, 10(1), 4. https://doi.org/10.1186/s40066-020-00277-3

Muriithi, C., Mwongera, C., Abera, W., Chege, C. G. K., & Ouedraogo, I. (2023). A scalable approach to improve CSA targeting practices among smallholder farmers. Heliyon, 9(10). https://doi.org/10.1016/j.heliyon.2023.e20526

Mutengwa, C. S., Mnkeni, P., & Kondwakwenda, A. (2023). Climate-Smart Agriculture and Food Security in Southern Africa: A Review of the Vulnerability of Smallholder Agriculture and Food Security to Climate Change. Sustainability, 15(4), Article 4. https://doi.org/10.3390/su15042882

Nagar, A., Namdeo, S., Verma, B., Shrivastava, S., & Sarkar, R. (2023). Role of Climate-Smart Agriculture towards Sustainable Food Production. International Journal of Environment and Climate Change, 13, 465–472. https://doi.org/10.9734/ijecc/2023/v13i123703

Nair, M. K., Augustine, L. F., & Konapur, A. (2016). Food-based interventions to modify diet quality and diversity to address multiple micronutrient deficiency. Frontiers in Public Health, 3, 277.

Naresh, R. K., Gupta, R. K., Kumar, A., Prakesh, S., Tomar, S. S., Singh, A., Rathi, R. C., Misra, A. K., & Singh, M. (2011). Impact of laser land leveller for enhancing water productivity in Western Uttar Pradesh. International Journal of Agricultural Engineering, 4(2), 133–147.

Nciizah, A., & Wakindiki, I. (2015). Climate Smart Agriculture: Achievements and Prospects in Africa. Journal of Geoscience and Environment Protection, 3, 99–105. https://doi.org/10.4236/gep.2015.36016

Ngoma, H. (2018). Does minimum tillage improve the livelihood outcomes of smallholder farmers in Zambia? Food Security, 10(2), 381–396. https://doi.org/10.1007/s12571-018-0777-4

Nigussie, A., Kuyper, T. W., & de Neergaard, A. (2015). Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia. Waste Management, 44, 82–93.

Onyeneke, R. U., Igberi, C. O., Uwadoka, C. O., & Aligbe, J. O. (2018). Status of climate-smart agriculture in southeast Nigeria. GeoJournal, 83(2), 333–346. https://doi.org/10.1007/s10708-017-9773-z

Ouda, S., & Zohry, A. E.-H. (2022). Climate-Smart Agriculture: Reducing Food Insecurity. Springer International Publishing. https://doi.org/10.1007/978-3-030-93111-7

Pais, I. P., Reboredo, F. H., Ramalho, J. C., Pessoa, M. F., Lidon, F. C., & Silva, M. M. (2020). Potential impacts of climate change on agriculture—A review. Emirates Journal of Food and Agriculture, 397. https://doi.org/10.9755/ejfa.2020.v32.i6.2111

Porfirio, L. L., Newth, D., Finnigan, J. J., & Cai, Y. (2018). Economic shifts in agricultural production and trade due to climate change. Palgrave Communications, 4(1), 1–9. https://doi.org/10.1057/s41599-018-0164-y

Praveen, B., & Sharma, P. (2019). A review of literature on climate change and its impacts on agriculture productivity. Journal of Public Affairs, 19(4), e1960. https://doi.org/10.1002/pa.1960

Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany, 114(8), 1571–1596.

Qureshi, M. R. N. M., Almuflih, A. S., Sharma, J., Tyagi, M., Singh, S., & Almakayeel, N. (2022). Assessment of the Climate-Smart Agriculture Interventions towards the Avenues of Sustainable Production–Consumption. Sustainability, 14(14), Article 14. https://doi.org/10.3390/su14148410

R., L., Thomas, J., & Joseph, S. (2024). Impacts of recent rainfall changes on agricultural productivity and water resources within the Southern Western Ghats of Kerala, India. Environmental Monitoring and Assessment, 196(2), 115. https://doi.org/10.1007/s10661-023-12270-x

Raihan, A. (2024). A review of recent advances, challenges, and potential future directions of climate-smart agriculture.

Raihan, A., & Tuspekova, A. (2022). Dynamic impacts of economic growth, energy use, urbanization, tourism, agricultural value-added, and forested area on carbon dioxide emissions in Brazil. Journal of Environmental Studies and Sciences, 12(4), 794–814. https://doi.org/10.1007/s13412-022-00782-w

Ramachandran Nair, P. K., Mohan Kumar, B., & Nair, V. D. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172(1), 10–23. https://doi.org/10.1002/jpln.200800030

Reicosky, D. C., Hatfield, J. L., & Sass, R. L. (2000). Agricultural contributions to greenhouse gas emissions. In K. R. Reddy & H. F. Hodges (Eds.), Climate change and global crop productivity. (1st ed., pp. 37–55). CABI Publishing. https://doi.org/10.1079/9780851994390.0037

Richards, M. B., Butterbach-Bahl, K., Lipinski, B., & Ortiz-Monasterio, I. (2015). Site-Specific Nutrient Management (SSNM) provides guidance relevant to the context of farmers’ fields. SSNM maintains or enhances crop yields, while providing savings for farmers through more efficient fertilizer use. By minimizing fertilizer overuse, greenhouse gas emissions can be reduced, in some cases up to 50%.

Roy, N. (2020). Modern Strategies of Integrated Pest Management: A Review. JAST, 4.

Safdar, M., Shahid, M. A., Yang, C., Rasul, F., Tahir, M., Raza, A., & Sabir, R. M. (2024). Climate Smart Agriculture and Resilience (pp. 28–52). https://doi.org/10.4018/979-8-3693-4864-2.ch002

Schaller, M., Barth, E. I., Blies, D., Röhrig, F., & Schümmelfeder, M. (2017a). Climate smart agriculture (CSA): Climate smart agroforestry. https://cgspace.cgiar.org/bitstream/10568/82727/2/CSA_ClimateSmart_Agroforestry_2017.pdf

Schaller, M., Barth, E. I., Blies, D., Röhrig, F., & Schümmelfeder, M. (2017b). Climate Smart Agriculture (CSA): Improved Fodder Management.

Sharma, A., & Bhatt, R. (2019). Climate-Smart Technologies for Sustainable Farming. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 10(3), Article 3. https://doi.org/10.61841/turcomat.v10i3.14400

Shrestha, S. (2019). Effects of Climate Change in Agricultural Insect Pest. Acta Scientific Agriculture, 3(12), 74–80. https://doi.org/10.31080/ASAG.2019.03.0727

Sime, G., & Aune, J. B. (2018). Sustainability of Improved Crop Varieties and Agricultural Practices: A Case Study in the Central Rift Valley of Ethiopia. Agriculture, 8(11), Article 11. https://doi.org/10.3390/agriculture8110177

Steenwerth, K. L., Hodson, A. K., Bloom, A. J., Carter, M. R., Cattaneo, A., Chartres, C. J., Hatfield, J. L., Henry, K., Hopmans, J. W., Horwath, W. R., Jenkins, B. M., Kebreab, E., Leemans, R., Lipper, L., Lubell, M. N., Msangi, S., Prabhu, R., Reynolds, M. P., Sandoval Solis, S., & Jackson, L. E. (2014a). Climate-smart agriculture global research agenda: Scientific basis for action. Agriculture & Food Security, 3(1), 11. https://doi.org/10.1186/2048-7010-3-11

Steenwerth, K. L., Hodson, A. K., Bloom, A. J., Carter, M. R., Cattaneo, A., Chartres, C. J., Hatfield, J. L., Henry, K., Hopmans, J. W., Horwath, W. R., Jenkins, B. M., Kebreab, E., Leemans, R., Lipper, L., Lubell, M. N., Msangi, S., Prabhu, R., Reynolds, M. P., Sandoval Solis, S., & Jackson, L. E. (2014b). Climate-smart agriculture global research agenda: Scientific basis for action. Agriculture & Food Security, 3(1), 11. https://doi.org/10.1186/2048-7010-3-11

Subeesh, A., & Mehta, C. (2021). Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture, 5. https://doi.org/10.1016/j.aiia.2021.11.004

Tadesse, A., & Anteneh, M. (2018). Drought Tolerance Mechanisms in Field Crops.

Udayar Pillai, S., V Naga Kumar Kommireddi, C., & Samuel, M. (2024). Remote Sensing in Precision Agriculture (pp. 201–223). https://doi.org/10.1007/978-3-031-43548-5_7

van der Kooij, S., Zwarteveen, M., Boesveld, H., & Kuper, M. (2013). The efficiency of drip irrigation unpacked. Agricultural Water Management, 123, 103–110. https://doi.org/10.1016/j.agwat.2013.03.014

van Wijk, M. T., Merbold, L., Hammond, J., & Butterbach-Bahl, K. (2020). Improving assessments of the three pillars of climate smart agriculture: Current achievements and ideas for the future. Frontiers in Sustainable Food Systems, 4, 558483.

Velasco-Muñoz, J. F., Aznar-Sánchez, J. A., Batlles-delaFuente, A., & Fidelibus, M. D. (2019). Rainwater Harvesting for Agricultural Irrigation: An Analysis of Global Research. Water, 11(7), Article 7. https://doi.org/10.3390/w11071320

Vishnoi, S., & Goel, R. K. (2024). Climate smart agriculture for sustainable productivity and healthy landscapes. Environmental Science & Policy, 151, 103600. https://doi.org/10.1016/j.envsci.2023.103600

Wakweya, R. B. (2023a). Challenges and prospects of adopting climate-smart agricultural practices and technologies: Implications for food security. Journal of Agriculture and Food Research, 14, 100698. https://doi.org/10.1016/j.jafr.2023.100698

Wakweya, R. B. (2023b). Challenges and prospects of adopting climate-smart agricultural practices and technologies: Implications for food security. Journal of Agriculture and Food Research, 14, 100698. https://doi.org/10.1016/j.jafr.2023.100698

Wakweya, R. B. (2023c). Journal of Agriculture and Food Research. Journal of Agriculture and Food Research, 14, 100698.

Wassie, A., & Pauline, N. (2018). Evaluating smallholder farmers’ preferences for climate smart agricultural practices in Tehuledere District, northeastern Ethiopia. Singapore Journal of Tropical Geography, 39(2), 300–316. https://doi.org/10.1111/sjtg.12240

Wildan, J. (2023). A Review: Artificial Intelligence Related to Agricultural Equipment Integrated with the Internet of Things. Journal of Advanced Technology and Multidiscipline, 2, 47–60. https://doi.org/10.20473/jatm.v2i2.51440

Yadav, D., Wati, L., Yadav, D. B., & Kumar, A. (2020). Long-term influence of conservation tillage on soil organic carbon and microbial diversity. The Indian Journal of Agricultural Sciences, 90(7), Article 7. https://doi.org/10.56093/ijas.v90i7.105604

Zakaria, A., Azumah, S. B., Appiah-Twumasi, M., & Dagunga, G. (2020). Adoption of climate-smart agricultural practices among farm households in Ghana: The role of farmer participation in training programmes. Technology in Society, 63, 101338. https://doi.org/10.1016/j.techsoc.2020.101338

Zhan, L., Chen, J., Zhang, C., Wang, T., Li, L., & Xin, P. (2018). A major waterfall landscape maintained by fog drip water. Hydrology and Earth System Sciences Discussions, 1–34. https://doi.org/10.5194/hess-2018-37

Zhang, Y., Li, H., Sun, Y., Zhang, Q., Liu, P., Wang, R., & Li, J. (2022). Temporal stability analysis evaluates soil water sustainability of different cropping systems in a dryland agricultural ecosystem. Agricultural Water Management, 272, 107834.

Zhao, J., Liu, D., & Huang, R. (2023a). A Review of Climate-Smart Agriculture: Recent Advancements, Challenges, and Future Directions. Sustainability, 15(4), Article 4. https://doi.org/10.3390/su15043404

Zhao, J., Liu, D., & Huang, R. (2023b). A review of climate-smart agriculture: Recent advancements, challenges, and future directions. Sustainability, 15(4), 3404.

Zougmoré, R., Jalloh, A., & Tioro, A. (2014). Climate-smart soil water and nutrient management options in semiarid West Africa: A review of evidence and analysis of stone bunds and zaï techniques. Agriculture & Food Security, 3(1), 16. https://doi.org/10.1186/2048-7010-3-16

Published

2024-09-25

How to Cite

Neupane, B., Bhattarai, B., Gurung, L., Rawal, J. S., & Joshi, G. R. (2024). Integrating climate-smart agriculture for sustainable agriculture: Opportunities, challenges and future directions. Archives of Agriculture and Environmental Science, 9(3), 449-458. https://doi.org/10.26832/24566632.2024.090307

Issue

Section

Research Articles