Optimizing nitrogen and sulphur nutrition for enhanced yield and yield-attributing traits in groundnut (Arachis hypogaea L.)
DOI:
https://doi.org/10.26832/24566632.2025.1003016Keywords:
Arachis hypogaea, Correlogram, Heatmap, Principal component analysis, Nitrogen and SulphurAbstract
Optimizing nutrient management is pivotal for the proper growth and development of plants to ensure higher productivity. The present study evaluated the effect of different nitrogen-sulphur levels on the growth and yield of groundnut. The experiment comprised six N-S treatment combinations (F1-6: N 30, 40 and S 0, 20, 30 kg ha-1) with a control (F0: N 0 and S 0 kg ha-1) using Randomized Complete Block Design (RCBD) with three replications. The result demonstrated significant yield improvements of groundnut under N and S applications compared to the control. Notably, Binachinabadam-8 (V2) treated with the highest level of N-S (F6, N 40 and S 30 kg ha-1) demonstrated the best performance, with enhanced plant height (46.67 cm), number of branches plant-1 (8.67), number of pods plant-1 (37.67), weight of pods plant-1 (27.84 g), number of seeds pod-1 (2.10), 100-seed weight (8.67 g), shelling percentage (73.52%), seed yield (1.55 t ha-1), stover yield (3.07 t ha-1), biological yield (5.36 t ha-1) and harvest index (42.66%). Further statistical analyses, such as Pearson correlation analysis, heatmap analysis, and PCA, confirmed trait contributions like number and weight of pods plant-1, shelling percentage, 100-seed weight, plant height, and number of branches plant-1 for yield variation. The cultivation of Binachinabadam-8 with 40 kg N ha-1 (≈87 kg Urea ha-1) and 30 kg S ha-1 (≈167 kg Gypsum ha-1) might offer a promising strategy towards groundnut productivity. The study provides valuable insights for developing nutrient management strategies aimed at sustainable groundnut production in less nutrient soils.
Downloads
References
Aswini, O., Jinsy, V. S., Sumesh, K. V., Manikandan, N., & Ancy, F. (2024a). Assessment of nitrogen and sulphur nutrition to optimize the yield and quality of groundnut (Arachis hypogaea L.). Asian Journal of Soil Science and Plant Nutrition, 10(1), 397-408. https://doi.org/10.9734/ajsspn/2024/v10i1245
Aswini, O., Jinsy, V. S., Sumesh, K. V., Manikandan N., & Ancy, F. (2024b). Nitrogen and sulphur nutrition in groundnut (Arachis hypogaea L.) for northern coastal plains of Kerala. Mysore journal of agricultural sciences, 58(3), 35-44. https://www.uasbangalore.edu.in/images/2024-3rd-Issue/4.pdf
Balagangathar, K., Kalaiyarasan, C., Kandasamy, S., Madhavan, S., & Jawahar, S. (2024a). Impact of nitrogen and sulphur application on the growth and yield of groundnut (Arachis hypogeae L.). Crop Research, 59(3-4), 138-142. https://doi.org/10.31830/2454-1761.2024.CR-972
Balagangathar, K., Kalaiyarasan, C., Kandasamy, S., Madhavan, S., Jawahar, S., & Suseendran, K. (2024b). Effect of nitrogen and sulphur on yield, quality and economics of groundnut (Arachis hypogaea L.). International Journal of Research in Agronomy, 7(4), 338-340. https://doi.org/10.33545/2618060X.2024.v7.i4e.573
Balasubramanian, P., Subbulakshmi, B., Balmurugan, M., Gurumeenakshi, G., Prasanth, R. C., Deepika, R., & Surya, R. (2023). Nutritional profiling and its significance in groundnut: A review. Journal of Dairying, Foods & Home Sciences. https://doi.org/10.18805/ajdfr.dr-2136
BBS. (2024). The yearbook of agricultural statistics of Bangladesh. Statistical Division, Ministry of Planning, Government of the People’s Republic of Bangladesh, Dhaka.
Bhadiyatar, A. A., Patel, J. M., Patel, P. M., & Malav, J. K. (2022). Effect of potassium and sulphur on growth, yield attributes and yield of summer groundnut in loamy sand. The Pharma Innovation Journal, 11, 2704-2707. https://www.thepharmajournal.com/archives/2022/vol11issue2/PartAJ/11-2-323-915.pdf
Bokhtiar, S. M., Islam, S. M. F., Molla, M. M. U., Salam, M. A., & Rashid, M. A. (2023). Demand for and supply of pulses and oil crops in Bangladesh: A strategic projection for these food item outlooks by 2030 and 2050. Sustainability, 15, 8240. https://doi.org/10.3390/su15108240
Chakraborty, M., Rao, M. M. L. C. P., & Rao, C. S. (2019). Response of groundnut (Arachis hypogaea L.) to nitrogen levels and plant geometry. Agricultural Science Digest, 66, 606-609.
Deb, U., & Pramanik, S. (2015). Groundnut production performance in Bangladesh: A district level analysis. Economic Affairs, 60(3), 391-400. https://doi.org/10.5958/0976-4666.2015.00056.X
Devi, G. M. (2019). Variability studies for yield, yield attributes, water use efficiency and quality traits in groundnut (Arachis hypogaea L.). International Journal of Pure & Applied Bioscience, 7(5), 393-398. https://doi.org/10.18782/2320-7051.7437
Devi, L. M., Singh, R., & Singh, A. C. (2022). Effect of nitrogen and sulphur on yield and economics of summer groundnut (Arachis hypogaea L.). The Pharma Innovation Journal, 11(3): 460-462. http://www.thepharmajournal.com/
Dileep, D., Singh, V., Tiwari, D., George, G. S., & Swathi, P. (2021). Effect of variety and sulphur on growth and yield of groundnut (Arachis hypogaea L.). Biological Forum International Journal, 13, 475-478. https://doi.org/10.13140/RG.2.2.31245.67044
Gao, Y., Zeng, R., Yao, S., Wang, Y., Wang, J., Wan, S., Hu, W., Chen, T., & Zhang, L. (2024). Magnesium fertilizer application increases peanut growth and pod yield under reduced nitrogen application in southern China. The Crop Journal, 12(3), 915-926. https://doi.org/10.1016/j.cj.2024.03.008
Gelaye, Y., & Luo, H. (2024). Optimizing peanut (Arachis hypogaea L.) production: Genetic insights, climate adaptation, and efficient management practices: Systematic review. Plants, 13(21), 2988. https://doi.org/10.3390/plants13212988
Gomez, K. A., & Gomez, A. A. (1984). Duncan’s multiple range test. In Statistical procedures for agricultural research (2nd ed., pp. 202-215). John Wiley & Sons.
Haneena, K. M., Venkata Subbaiah, P., Sujani Rao, C. H., & Srinivasulu, K. (2021). Effect of boron on nutritional quality of groundnut grown in coastal sandy soils. International Journal of Plant & Soil Science, 33(19), 189-197. https://doi.org/10.9734/ijpss/2021/v33i1930618
Hoang, T. T. H., Do, D. T., Nguyen, H. N., Nguyen, V. B., Mann, S., & Bell, R. W. (2021). Sulfur management strategies to improve partial sulfur balance with irrigated peanut production on deep sands. Archives of Agronomy and Soil Science, 67(11), 1465-1478. https://doi.org/10.1080/03650340.2020.1798412
Hoq, M. S., Islam, Q. M. S., Khandoker, S., & Matin, M. A. (2016). Opportunities of groundnut cultivation and marketing system in char lands of Bangladesh. Bangladesh Journal of Agricultural Research, 41(4), 695-711. https://doi.org/10.3329/bjar.v41i4.30702
Islam, M. H., Salim, M., Hasan, A. K., Tabassum, R., Ousro, F. K., Hosen, I., Dina, M. M. A., & Monshi, F. I. (2022). Evaluation of rapeseed-mustard genotypes in different sowing regimes and their genetic variabilities. Journal of Tropical Crop Science, 9(3), 199-213. https://j-tropical-crops.com/index.php/agro/article/view/482
Jahan, M., Sarker, J. R., Burman, P., & Barman, L. R. (2022). Groundnut production performance based on chemical fertilizer practices and its profitability conditions. International Journal of Agricultural Research, Innovation and Technology, 12(2), 126-133. https://doi.org/10.3329/ijarit.v12i2.64098
Kumari, V. V., Gopinath, K. A., Chandran, M. S., Sunitha, B., Sriram, K., Ansari, M. A., Rao M. S., & Singh, V. K. (2025). The importance of sulphur in oilseed production-A South Asian context. Oil Crop Science, 10(2), 118-130. https://doi.org/10.1016/j.ocsci.2025.04.001
Li, L., Li, Q., Davis, K. E., Patterson, C., Oo, S., Liu, W., Liu, J., Wang, G., Fontana, J.E., Thornburg, T.E., & Pratt, I. S. (2021). Response of root growth and development to nitrogen and potassium deficiency as well as microRNA-mediated mechanism in peanut (Arachis hypogaea L.). Frontiers in Plant Science, 12, 695234. https://doi.org/10.3389/fpls.2021.695234
Liu, Z., & Li, X. (2023). A comparative study of oil, protein, and fatty acid content of 12 cultivars of peanut (Arachis hypogaea L.) grown from two regions in Shandong province, China. Crop Science, 63(4), 2491-2508. https://doi.org/10.1002/csc2.21014
Lun, A. (2019). BiocSingular: singular value decomposition for bioconductor packages. R package version. 1(0).
Meena, B. P., & Kumawat, S. M. (2011). Effect of planting geometry and nitrogen management on groundnut (Arachis hypogaea) in loamy sand soil of Rajasthan. The Indian Journal of Agricultural Sciences, 81(1). https://epubs.icar.org.in/index.php/IJAgS/article/view/2609
Nurezannat, Sarkar, M. A. R., Uddin, M. R., Sarker, U. K., Kaysar, M. S., & Saha, P. K. (2019). Effect of variety and sulphur on yield and yield components of groundnut. Journal of Bangladesh Agricultural University, 17(1), 1-8. https://doi.org/10.3329/jbau.v17i1.40656
Palsande, V. N., Nagrale, M. R., Kasture, M. C., Gokhale, N. B., Dhekale, J. S., & Salvi, V. G. (2019). Growth, yield and quality of kharif groundnut (Arachis hypogaea L.) as affected by different levels of nitrogen, potassium and zinc in lateritic soils of Konkan. Journal of Pharmacognosy and Phytochemistry, 8, 790-794. https://www.phytojournal.com/archives/2019/vol8issue5/PartO/8-4-620-207.pdf
Sakha, M. A., Jefwa, J., & Gweyi-Onyango, J. P. (2022). Critical analysis and evaluation of groundnut value chain for revamping its production for global food security. In Agriculture, livestock production and aquaculture: Advances for smallholder farming systems. Springer, 1, 43-58. https://doi.org/10.1007/978-3-030-93258-9_3
Sanni, J. A., Sanni, G. O., Awoniyi, R. R., Osanyinlusi, R., Richards, Y. E., Adesina, G. I., Adenuga, O.O., Apata, S.A., & Ekun, O. E. (2024). Effects of processing on the proximate composition, mineral content and the phytochemical analysis of groundnut seeds (Arachis hypogaea). Biology, Medicine, & Natural Product Chemistry, 13(1), 63-71. https://doi.org/10.14421/biomedich.2024.131.63-71
Shakil, M. (2022). Peanut cultivation: Peanut emerging as a major cash crop. The Daily Star. Retrieved June 29, 2022, from https://www.thedailystar.net/business/economy/news/peanut-emerging-major-cash-crop-2988416
Sharma, R. K., Cox, M. S., Oglesby, C., & Dhillon, J. S. (2024). Revisiting the role of sulfur in crop production: A narrative review. Journal of Agriculture and Food Research, 15, 101013. https://doi.org/10.1016/j.jafr.2024.101013
Statista. (2025). Worldwide oilseed production since 2008 [Graph]. Statista. Retrieved July 9, 2025, from https://www.statista.com/statistics/267271/worldwide-oilseed-production-since-2008/
Tabassum, R., Malek, M. A. & Monshi, F. I. (2021). Assessment of M6 sesame mutants based on growth parameters and genetic evaluation for yield and yield attributing traits. World Journal of Agricultural Sciences, 17(6), 526-531. https://www.idosi.org/wjas/wjas17(6)21/6.pdf
The Daily Star. (2024, February 14). Farmers expand oilseed production as import costs rise. The Daily Star. Retrieved July 10, 2025, from https://www.thedailystar.net/business/news/farmers-expand-oilseed-production-import-costs-rise-3593776
UNDP & FAO. (1988). Agro-ecological region of Bangladesh. Land resources appraisal of Bangladesh for agricultural development. BGD/81/035, Tech. Rep. N2, United Nations Development Programme and Food and Agricultural Organization, pp. 212-221.
USDA. (2022). Oilseeds and products annual report. United States Department of Agriculture. Retrieved from https://apps.fas.usda.gov
Veazie, P., Cockson, P., Henry, J., Perkins-Veazie, P., & Whipker, B. (2020). Characterization of nutrient disorders and impacts on chlorophyll and anthocyanin concentration of Brassica rapa var. Chinensis. Agriculture, 10(10), 461. https://doi.org/10.3390/agriculture10100461
Waghmode, B. D., Kambale, A. S., Navhale, V. C., Chendge, P. D., & Mahadkar, U. V. (2017). Effect of plant population and fertilizer doses on yield attributes, yield and economics of summer groundnut. International Journal of Current Microbiology and Applied Sciences, 6, 2670-2675. https://doi.org/10.20546/ijcmas.2017.611.314
Wang, M. L., Khera, P., Pandey, M. K., Wang, H., Qiao, L., Feng, S., Tonnis, B., Barkley, N.A., Pinnow, D., Holbrook, C.C., & Culbreath, A. K. (2015). Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PlosOne, 10(4), e0119454. https://doi.org/10.1371/journal.pone.0119454
Xia, G., Wang, Y., Hu, J., Wang, S., Zhang, Y., Wu, Q., & Chi, D. (2021). Effects of supplemental irrigation on water and nitrogen use, yield, and kernel quality of peanut under nitrogen-supplied conditions. Agricultural Water Management, 243, 106518. https://doi.org/10.1016/j.agwat.2020.106518
Zhang, X., Hou, W., Gou, Z., Jia, S., Li, H., Gao, Q., & Li, X. (2024). Exogenous sulfur application can effectively alleviate iron deficiency yellowing in peanuts and increase pod yield. European Journal of Agronomy, 159, 127252. https://doi.org/10.1016/j.eja.2024.127252
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agriculture and Environmental Science Academy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
