Organo-mineral nitrogen fertilizer enhances growth, nitrogen use efficiency and protein content in red amaranth
DOI:
https://doi.org/10.26832/24566632.2025.1004013Keywords:
Brown coal urea, Fertilizer N use efficiency, N use efficiency, Red amaranth, UreaAbstract
Red amaranth is a popular vegetable in Bangladesh because of its high nutritional value and pleasant flavor. Efficient nitrogen (N) management is vital for sustainable crop production, but conventional urea fertilizers often cause significant N losses. In recent years, organo-mineral fertilizers (OMFs) have gained popularity for improving crop yield and soil fertility. This study examined the effect of brown Coal Urea (BCU) as an organo-mineral N fertilizer, on growth, fresh biomass yield, N use efficiency (NUE), and protein content of red amaranth (Amaranthus tricolor L.). A pot experiment, conducted under a completely randomized design, assessed five N application rates (0, 50, 75, 100, 150 kg N ha-¹) delivered through urea, DAP, BCU applied as topdressing, and BCU applied as a basal treatment. The results showed that BCU treatment significantly (p<0.05) improved all parameters compared to urea. The highest plant height and fresh biomass yield were found with BCU basal application at 150 kg N ha-1, while the greatest NUE (77.29%) and FNUE (56.84%) were achieved at 50 kg N ha-1. The improved performance was attributed to slow-release and humic-rich nature of BCU, which enhances N retention and uptake efficiency. Overall, BCU effectively increased yield and N efficiency in red amaranth, highlighting its potential as a sustainable alternative to conventional fertilizers.
Downloads
References
Akimbekov, N. S., Digel, I., Tastambek, K. T., Sherelkhan, D. K., Jussupova, D. B., & Altynbay, N. P. (2021). Low-rank coal as a source of humic substances for soil amendment and fertility management. Agriculture, 11(12), 1261. https://doi.org/10.3390/agriculture11121261
Ampong, K., Thilakaranthna, M. S., & Gorim, L. Y. (2022). Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy, 4, 848621. https://doi.org/10.3389/fagro.2022.848621
Beig, B., Niazi, M. B. K., Jahan, Z., Hussain, A., Zia, M. H., & Mehran, M. T. (2020). Coating materials for slow release of nitrogen from urea fertilizer: A review. Journal of Plant Nutrition, 43(10), 1510-1533. https://doi.org/10.1080/01904167.2020.1744647
Cui, X., Wang, J., Wang, J., Li, Y., Lou, Y., Zhuge, Y., & Dong, Y. (2022). Soil available nitrogen and yield effect under different combinations of urease/nitrate inhibitor in wheat/maize rotation system. Agronomy, 12(8), 1888. https://doi.org/10.3390/agronomy12081888
Efthimiadou, A., Sparangis, P., Leonidakis, D., Kasimatis, C.-N., Kakabouki, I., Mylonas, I., Ninou, E., Gianniotis, P., & Katsenios, N. (2022). Comparative evaluation of mineral and organo-mineral nitrogen fertilization and the role of amino acids as plant growth promoters in maize cultivation. Agronomy, 12(11), 2638. https://doi.org/10.3390/agronomy12112638
Gil-Ortiz, R., Naranjo, M. Á., Ruiz-Navarro, A., Atares, S., García, C., Zotarelli, L., San Bautista, A., & Vicente, O. (2020). Enhanced agronomic efficiency using a new controlled-released, polymeric-coated nitrogen fertilizer in rice. Plants, 9(9), 1183. https://doi.org/10.3390/plants9091183
Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. John wiley & sons.
Ibrahim, M. M., Wu, F., Chen, Y., Liu, D., Zhang, W., He, Z., Hou, E., Xing, S., & Mao, Y. (2023). Impacts of MgO-and sepiolite-biochar composites on N-partitioning and dynamics of N-cycling bacteria in a soil-maize system: A field-based 15N-urea tracer study. Geoderma, 429, 116236. https://doi.org/10.1016/j.geoderma.2022.116236
Islam, S. S., Anik, R. B., Hasan, A. K., Karim, R., & Khomphet, T. (2024). Impacts of vermicompost and farmyard manure as organic fertilizer with biochar amendment on soil quality, growth and yield of sunflower. Indian Journal of Agricultural Research, 58(4). https://doi.org/10.18805/IJARe.AF-848
Jing, J., Zhang, S., Yuan, L., Li, Y., Zhang, Y., Wen, Y., & Zhao, B. (2022). Humic acid complex formation with urea alters its structure and enhances biomass production in hydroponic maize. Journal of the Science of Food and Agriculture, 102(9), 3636-3643. https://doi.org/10.1002/jsfa.11710
Karimi, E., Shirmardi, M., Dehestani Ardakani, M., Gholamnezhad, J., & Zarebanadkouki, M. (2020). The effect of humic acid and biochar on growth and nutrients uptake of calendula (Calendula officinalis L.). Communications in Soil Science and Plant Analysis, 51(12), 1658-1669. https://doi.org/10.1080/00103624.2020.1791157
Kumari, M., Sheoran, S., Prakash, D., Yadav, D. B., Yadav, P. K., & Jat, M. K. (2024). Long-term application of organic manures and chemical fertilizers improve the organic carbon and microbiological properties of soil under pearl millet-wheat cropping system in North-Western India. Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e25333
Lei, H., Lian, Y., Kyaw, P. E. E., Bai, M., Leghari, S. J., Pan, H., Xiao, Z., & Chen, D. (2023). Using 15N Isotope to Evaluate the Effect of Brown Coal Application on the Nitrogen Fate in the Soil–Plant System. Agronomy, 13(1), 263. https://doi.org/10.3390/agronomy13010263
Liu, Y., Hu, L., Zhang, S., Yao, Z., Zhou, M., & Zhu, B. (2025). Organic–Inorganic Fertilization Sustains Crop Yields While Mitigating N2O and NO Emissions in Subtropical Wheat–Maize Systems. Agriculture, 15(10), 1108. https://doi.org/10.3390/agriculture15101108
Maciejewska, A., & Kwiatkowska-Malina, J. (2022). Elucidating the effect and mechanism of the brown coal-based amendment on plant availability of zinc, lead and cadmium in a Haplic Luvisols. Environmental Science and Pollution Research, 29(16), 23383-23391. https://doi.org/10.1007/s11356-021-17424-3
Managa, G. M., & Nemadodzi, L. E. (2023). Comparison of agronomic parameters and nutritional composition on red and green amaranth species grown in open field versus greenhouse environment. Agriculture, 13(3), 685.https://doi.org/10.3390/agriculture13030685
Mariotti, F., Tomé, D., & Mirand, P. P. (2008). Converting nitrogen into protein—beyond 6.25 and Jones' factors. Critical Reviews in Food Science and Nutrition, 48(2), 177-184. https://doi.org/10.1080/10408390701279749
Moll, R., Kamprath, E., & Jackson, W. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agronomy Journal, 74(3), 562-564. https://doi.org/10.2134/agronj1982.00021962007400030037x
Mustafa, A., Athar, F., Khan, I., Chattha, M. U., Nawaz, M., Shah, A. N., Mahmood, A., Batool, M., Aslam, M. T., & Jaremko, M. (2022). Improving crop productivity and nitrogen use efficiency using sulfur and zinc-coated urea: A review. Frontiers in Plant Science, 13, 942384. https://doi.org/10.3389/fpls.2022.942384
Olaetxea, M., Mora, V., Baigorri, R., Zamarreno, A. M., & Garcia-Mina, J. M. (2020). The singular molecular conformation of humic acids in solution influences their ability to enhance root hydraulic conductivity and plant growth. Molecules, 26(1), 7-10. https://doi.org/10.3390/molecules26010003
Saha, B. K., Rose, M. T., Van Zwieten, L., Wong, V. N., & Patti, A. F. (2021). Slow release brown coal-urea fertilizer potentially influences greenhouse gas emissions, nitrogen use efficiency, and sweet corn yield in oxisol. ACS Agricultural Science & Technology, 1(5), 469-478. https://doi.org/10.1021/acsagscitech.1c00082
Saha, B. K., Rose, M. T., Van Zwieten, L., Wong, V. N., Rose, T. J., & Patti, A. F. (2023). Fate and recovery of nitrogen applied as slow release brown coal-urea in field microcosms: 15 N tracer study. Environmental Science: Processes & Impacts, 25(3), 648-658. https://doi.org/10.1039/D2EM00482H
Saha, B. K., Rose, M. T., Wong, V., Cavagnaro, T. R., & Patti, A. F. (2017). Hybrid brown coal-urea fertiliser reduces nitrogen loss compared to urea alone. Science of The Total Environment, 601-602, 1496-1504. https://doi.org/10.1016/j.scitotenv.2017.05.270
Santos, M. P., Zupunski, M., Monda, H., Gralian, J., James, A., Grossmann, G., Lamar, R. T., & Zandonadi, D. B. (2025). Humic acids modify root architecture in Arabidopsis through H+-ATPase-dependent target of rapamycin activation in concert with Ca2+ and ROS signaling. Chemical and Biological Technologies in Agriculture, 12(1), 47. https://doi.org/10.1186/s40538-025-00764-4
Shi, W., Ju, Y., Bian, R., Li, L., Joseph, S., Mitchell, D. R. G., Munroe, P., Taherymoosavi, S., & Pan, G. (2020). Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment, 701, 134424. https://doi.org/10.1016/j.scitotenv.2019.134424
Uddin, M. K., Yeasmin, S., Mohiuddin, K., Chowdhury, M. A. H., & Saha, B. K. (2023). Peat-based organo-mineral fertilizer improves nitrogen use efficiency, soil quality, and yield of baby corn (Zea mays L.). Sustainability, 15(11), 9086. https://doi.org/10.3390/su15119086
Yang, F., Sui, L., Tang, C., Li, J., Cheng, K., & Xue, Q. (2021). Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances. Science of the Total Environment, 768, 145106. https://doi.org/10.1016/j.scitotenv.2021.145106
Yeasmin, S., Uddin, M. K., Chowdhury, M. A. H., Mohiuddin, K., & Saha, B. K. (2024). Poultry manure-urea fertilizer potentially influences nitrogen use efficiency, nutritional quality, and yield of baby corn (Zea mays L.). Journal of Agriculture and Food Research, 18, 101409. https://doi.org/10.1016/j.jafr.2024.101409
Yeoh, H.H., & Wee, Y.C. (1994). Leaf protein contents and nitrogen-to-protein conversion factors for 90 plant species. Food Chemistry, 49(3), 245-250. https://doi.org/10.1016/0308-8146(94)90167-8
Yoshida, S., Forno, D. A., & Cock, J. H. (1971). Laboratory manual for physiological studies of rice.
Zaman, H., Suchi, S., Tabassum, N., & Rahman, M. (2021). Response of growth, biomass production and nutrient uptake of red amaranth (Amaranthus tricolor L.) to various organic manures and chemical fertilizers. Journal of Biodiversity Conservation and Bioresource Management, 7(2), 73-82. https://doi.org/10.3329/jbcbm.v7i2.60152
Zandonadi, D. B., Monda, H., Gralian, J., James, A., Lamar, R. T., & Santos, M. P. (2025). Humic acids as drivers of plant growth: regulating root development and photobiology through redox modulation. Chemical and Biological Technologies in Agriculture, 12(1), 71. https://doi.org/10.1186/s40538-025-00789-9
Zhao, C., Gao, Z., Liu, G., Qian, Z., Jiang, Y., Li, G., Zhang, J., Xu, K., Dai, Q., & Guo, B. (2023). Optimization of combining controlled-release urea of different release period and normal urea improved rice yield and nitrogen use efficiency. Archives of Agronomy and Soil Science, 69(5), 821-834. https://doi.org/10.1080/03650340.2022.2035369
Zhao, H., Xie, T., Xiao, H., & Gao, M. (2022). Biochar-based fertilizer improved crop yields and N utilization efficiency in a maize–Chinese cabbage rotation system. Agriculture, 12(7), 1030. https://doi.org/10.3390/agriculture12071030
Zhao, N., Ma, J., Wu, L., Li, X., Xu, H., Zhang, J., Wang, X., Wang, Y., Bai, L., & Wang, Z. (2024). Effect of organic manure on crop yield, soil properties, and economic benefit in wheat-maize-sunflower rotation system, Hetao irrigation district. Plants, 13(16), 2250. https://doi.org/10.3390/plants13162250
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agriculture and Environmental Science Academy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
