A review on determinants and optimization strategies in prime editing in cereal and non-cereal crops

Authors

  • Bipasha Pandit Agriculture and Forestry University, Rampur, Chitwan, Nepal
  • Chitra Bahadur Bohara Agriculture and Forestry University, Rampur, Chitwan, Nepal

DOI:

https://doi.org/10.26832/24566632.2025.1004020

Keywords:

DNA repair, Optimization, pegRNA design, Plant genome editing, Prime editing

Abstract

Prime editing provides precise base changes, minute insertions (Small insertions ≤3 bp showed efficiencies of 2–8%) or deletions, and more defined substitutions without cutting both DNA strands or finding a donor. This is clearly better for safety and control. Plants have quickly taken on, but not in identical way. Changing editor backbones, reshaping pegRNAs, and evaluating out different delivery methods have often made things more efficient, but these improvements don't always work for all species or tissues. Simple design choices like PBS length, RTT layout, adding a 3′ structural tail, or employing paired pegRNAs can have greater implications on results than the editor itself. Editing efficiencies in rice protoplasts ranged from 0.26% to 2.2% for different targets. Rice showed that it was possible, as subsequent initiatives certain of which turned out far more successful than others—propelled into wheat, several dicots, and even some trees. While improvements in editor engineering, more advanced promoters, and computational design all got better, functionality still varies from locus to locus and genotype to genotype. In the real world, the transformation techniques and the local target context often define the outcome. This review summarizes collectively the greatest developments about plant prime editing, focusing on how it can be deployed for specific crops, how procedures can be strengthened, and design guidelines. The degree to which prime editing has been utilized in breeding and functional genomics will depend on further study on pegRNA stabilization, backbone variations, and various methods of delivering it.

Downloads

Download data is not yet available.

References

Anzalone, A. V., Gao, X. D., Podracky, C. J., Nelson, A. T., Koblan, L. W., Raguram, A., Levy, J. M., Mercer, J. A. M., & Liu, D. R. (2022). Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nature Biotechnology, 40(5), 731–740. https://doi.org/10.1038/s41587-021-01133-w

Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785), 149–157. https://doi.org/10.1038/s41586-019-1711-4

Cao, Z., Sun, W., Qiao, D., Wang, J., Li, S., Liu, X., Xin, C., Lu, Y., Gul, S. L., Wang, X., & Chen, Q. (2024). PE6c greatly enhances prime editing in transgenic rice plants. Journal of Integrative Plant Biology, 66(9), 1864–1870. https://doi.org/10.1111/jipb.13738

Chauhan, V. P., Sharp, P. A., & Langer, R. (2025). Engineered prime editors with minimal genomic errors. Nature. https://doi.org/10.1038/s41586-025-09537-3

Chen, P. J., Hussmann, J. A., Yan, J., Knipping, F., Ravisankar, P., Chen, P.-F., Chen, C., Nelson, J. W., Newby, G. A., Sahin, M., Osborn, M. J., Weissman, J. S., Adamson, B., & Liu, D. R. (2021). Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell, 184(22), 5635–5652.e29. https://doi.org/10.1016/j.cell.2021.09.018

Choi, J., Chen, W., Suiter, C. C., Lee, C., Chardon, F. M., Yang, W., Leith, A., Daza, R. M., Martin, B., & Shendure, J. (2022). Precise genomic deletions using paired prime editing. Nature Biotechnology, 40(2), 218–226. https://doi.org/10.1038/s41587-021-01025-z

Doman, J. L., Pandey, S., Neugebauer, M. E., An, M., Davis, J. R., Randolph, P. B., McElroy, A., Gao, X. D., Raguram, A., Richter, M. F., Everette, K. A., Banskota, S., Tian, K., Tao, Y. A., Tolar, J., Osborn, M. J., & Liu, D. R. (2023). Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell, 186(18), 3983–4002.e26. https://doi.org/10.1016/j.cell.2023.07.039

Ferreira da Silva, J., Oliveira, G. P., Arasa-Verge, E. A., Kagiou, C., Moretton, A., Timelthaler, G., Jiricny, J., & Loizou, J. I. (2022). Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nature Communications, 13, 760. https://doi.org/10.1038/s41467-022-28442-1

Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 551(7681), 464–471. https://doi.org/10.1038/nature24644

Gupta, A., Liu, B., Chen, Q., & Yang, B. (2023). High-efficiency prime editing enables new strategies for broad-spectrum resistance to bacterial blight of rice. Plant Biotechnology Journal, 21(7), 1454–1464. https://doi.org/10.1111/pbi.14049

Gupta, A., Liu, B., Raza, S., Chen, Q.-J., & Yang, B. (2024). Modularly assembled multiplex prime editors for simultaneous editing of agronomically important genes in rice. Plant Communications, 5(2), 100741. https://doi.org/10.1016/j.xplc.2023.100741

Huang, Z., & Liu, G. (2023). Current advancement in the application of prime editing. Frontiers in Bioengineering and Biotechnology, 11, 1039315. https://doi.org/10.3389/fbioe.2023.1039315

Jiang, Y., Chai, Y., Qiao, D., Wang, J., Xin, C., Sun, W., Cao, Z., Zhang, Y., Zhou, Y., Wang, X.-C., & Chen, Q.-J. (2022). Optimized prime editing efficiently generates glyphosate-resistant rice plants carrying homozygous TAP-IVS mutation in EPSPS. Molecular Plant, 15(11), 1646–1649. https://doi.org/10.1016/j.molp.2022.09.006

Laforest, L. C., & Nadakuduti, S. S. (2022). Advances in delivery mechanisms of CRISPR gene-editing reagents in plants. Frontiers in Genome Editing, 4, 830178. https://doi.org/10.3389/fgeed.2022.830178

Lee, J., Kweon, J., & Kim, Y. (2025). Emerging trends in prime editing for precision genome editing. Experimental & Molecular Medicine, 57(7), 1381–1391. https://doi.org/10.1038/s12276-025-01463-8

Li, J., Li, H., Chen, J., Yan, L., & Xia, L. (2020). Toward precision genome editing in crop plants. Molecular Plant, 13(6), 811–813. https://doi.org/10.1016/j.molp.2020.04.008

Li, J., Chen, L., Liang, J., Xu, R., Jiang, Y., Li, Y., Ding, J., Li, M., Qin, R., & Wei, P. (2022). Development of a highly efficient prime editor 2 system in plants. Genome Biology, 23, 161. https://doi.org/10.1186/s13059-022-02730-x

Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A. V., Raguram, A., Doman, J. L., Liu, D. R., & Gao, C. (2020). Prime genome editing in rice and wheat. Nature Biotechnology, 38(5), 582–585. https://doi.org/10.1038/s41587-020-0455-x

Lin, Q., Jin, S., Zong, Y., Yu, H., Zhu, Z., Liu, G., Kou, L., Wang, Y., Qiu, J.-L., Li, J., & Gao, C. (2021). High-efficiency prime editing with optimized, paired pegRNAs in plants. Nature Biotechnology, 39(8), 923–927. https://doi.org/10.1038/s41587-021-00868-w

Liu, Y., Yang, G., Huang, S., Li, X., Wang, X., Li, G., Chi, T., Chen, Y., Huang, X., & Wang, X. (2021). Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Research, 31(10), 1134–1136. https://doi.org/10.1038/s41422-021-00520-x

Liu, N., Zhou, L., Lin, G., Hu, Y., Jiao, Y., Wang, Y., Liu, J., Yang, S., & Yao, S. (2022). HDAC inhibitors improve CRISPR-Cas9 mediated prime editing and base editing. Molecular Therapy – Nucleic Acids, 29, 36–46. https://doi.org/10.1016/j.omtn.2022.05.036

Mentani, A., Maresca, M., & Shiriaeva, A. (2025). Prime editing: Mechanistic insights and DNA repair modulation. Cells, 14(4), 277. https://doi.org/10.3390/cells14040277

Mu, H., Liu, Y., Chi, Y., Wang, F., Meng, S., Zhang, Y., Wang, X., & Zhao, D. (2025). Systematic optimization of prime editing for enhanced efficiency and versatility in genome engineering across diverse cell types. Frontiers in Cell and Developmental Biology, 13, 1589034. https://doi.org/10.3389/fcell.2025.1589034

Murray, J. B., Harrison, P. T., & Scholefield, J. (2025). Prime editing: Therapeutic advances and mechanistic insights. Gene Therapy, 32(2), 83–92. https://doi.org/10.1038/s41434-024-00499-1

Nelson, J. W., Randolph, P. B., Shen, S. P., Everette, K. A., Chen, P. J., Anzalone, A. V., An, M., Newby, G. A., Chen, J. C., Hsu, A., & Liu, D. R. (2022). Engineered pegRNAs improve prime editing efficiency. Nature Biotechnology, 40(3), 402–410. https://doi.org/10.1038/s41587-021-01039-7

Ni, P., Zhao, Y., Zhou, X., Liu, Z., Huang, Z., Ni, Z., Sun, Q., & Zong, Y. (2023). Efficient and versatile multiplex prime editing in hexaploid wheat. Genome Biology, 24, 156. https://doi.org/10.1186/s13059-023-02990-1

Perroud, P.-F., Guyon-Debast, A., Casacuberta, J. M., Paul, W., Pichon, J.-P., Comeau, D., & Nogué, F. (2023). Improved prime editing allows for routine predictable gene editing in Physcomitrium patens. Journal of Experimental Botany, 74(19), 6176–6187. https://doi.org/10.1093/jxb/erad189

Petrova, I. O., & Smirnikhina, S. A. (2023). The development, optimization and future of prime editing. International Journal of Molecular Sciences, 24(23), 17045. https://doi.org/10.3390/ijms242317045

Pinello, L., Canver, M. C., Hoban, M. D., Orkin, S. H., Kohn, D. B., Bauer, D. E., & Yuan, G.-C. (2016). Analyzing CRISPR genome-editing experiments with CRISPResso. Nature Biotechnology, 34(7), 695–697. https://doi.org/10.1038/nbt.3583

Ponnienselvan, K., Liu, P., Nyalile, T., Oikemus, S., Maitland, S. A., Lawson, N. D., Luban, J., & Wolfe, S. A. (2023). Reducing the inherent auto-inhibitory interaction within the pegRNA enhances prime editing efficiency. Nucleic Acids Research, 51(13), 6966–6980. https://doi.org/10.1093/nar/gkad456

Shuto, Y., Nakagawa, R., Zhu, S., Hoki, M., Omura, S. N., Hirano, H., Itoh, Y., Zhang, F., & Nureki, O. (2024). Structural basis for pegRNA-guided reverse transcription by a prime editor. Nature, 631(8019), 224–231. https://doi.org/10.1038/s41586-024-07497-8

Song, M., Lim, J. M., Min, S., Oh, J.-S., Kim, D. Y., Woo, J.-S., Nishimasu, H., Cho, S.-R., Yoon, S., & Kim, H. H. (2021). Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain. Nature Communications, 12, 5617. https://doi.org/10.1038/s41467-021-25928-2

Sousa, A. A., Hemez, C., Lei, L., Traore, S., Kulhankova, K., Newby, G. A., Doman, J. L., Oye, K., Pandey, S., Karp, P. H., McCray, P. B., & Liu, D. R. (2024). Systematic optimization of prime editing for the efficient functional correction of CFTR F508del in human airway epithelial cells. Nature Biomedical Engineering, 9(1), 7–21. https://doi.org/10.1038/s41551-024-01233-3

Tian, S., Yao, L., Zhang, Y., Rao, X., & Zhu, H. (2025). Prime editing for crop improvement: A systematic review of optimization strategies and advanced applications. Genes, 16(8), 965. https://doi.org/10.3390/genes16080965

Vu, T. V., Nguyen, N. T., Kim, J., Das, S., Lee, J., & Kim, J.-Y. (2022). The obstacles and potential solution clues of prime editing applications in tomato. BioDesign Research, 2022, 0001. https://doi.org/10.34133/bdr.0001

Vu, T. V., Nguyen, N. T., Kim, J., Song, Y. J., Nguyen, T. H., & Kim, J.-Y. (2024). Optimized dicot prime editing enables heritable desired edits in tomato and Arabidopsis. Nature Plants, 10(10), 1502–1513. https://doi.org/10.1038/s41477-024-01786-w

Xu, R., Li, J., Liu, X., Shan, T., Qin, R., & Wei, P. (2020). Development of plant prime-editing systems for precise genome editing. Plant Communications, 1(3), 100043. https://doi.org/10.1016/j.xplc.2020.100043

Yu, G., Kim, H. K., Park, J., Kwak, H., Cheong, Y., Kim, D., Kim, J., Kim, J., & Kim, H. H. (2023). Prediction of efficiencies for diverse prime editing systems in multiple cell types. Cell, 186(10), 2256–2272.e23. https://doi.org/10.1016/j.cell.2023.03.034

Zhang, H., Si, X., Ji, X., Fan, R., Liu, J., Chen, K., Wang, D., & Gao, C. (2018). Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology, 36(9), 894–898. https://doi.org/10.1038/nbt.4202

Zhang, G., Liu, Y., Huang, S., Qu, S., Cheng, D., Yao, Y., Ji, Q., Wang, X., Huang, X., & Liu, J. (2022). Enhancement of prime editing via xrRNA motif-joined pegRNA. Nature Communications, 13, 1856. https://doi.org/10.1038/s41467-022-29507-x

Zhang, W., Petri, K., Ma, J., Lee, H., Tsai, C.-L., Joung, J. K., & Yeh, J.-R. J. (2024). Enhancing CRISPR prime editing by reducing misfolded pegRNA interactions. eLife, 12, RP90948. https://doi.org/10.7554/eLife.90948

Zhao, Z., Shang, P., Mohanraju, P., & Geijsen, N. (2023). Prime editing: Advances and therapeutic applications. Trends in Biotechnology, 41(8), 1000–1012. https://doi.org/10.1016/j.tibtech.2023.03.004

Zhong, Z., Fan, T., He, Y., Liu, S., Zheng, X., Xu, Y., Ren, J., Yuan, H., Xu, Z., & Zhang, Y. (2024). An improved plant prime editor for efficient generation of multiple-nucleotide variations and structural variations in rice. Plant Communications, 5(9), 100976. https://doi.org/10.1016/j.xplc.2024.100976

Zou, J., Meng, X., Liu, Q., Shang, M., Wang, K., Li, J., Yu, H., & Wang, C. (2022). Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice. Science China Life Sciences, 65(11), 2328–2331. https://doi.org/10.1007/s11427-022-2147-2

Zou, J., Li, Y., Wang, K., Wang, C., & Zhuo, R. (2024). Prime editing enables precise genome modification of a Populus hybrid. aBIOTECH, 5(4), 497–501. https://doi.org/10.1007/s42994-024-00177-1

Downloads

Published

2025-12-25

How to Cite

Pandit, B., & Bohara, C. B. (2025). A review on determinants and optimization strategies in prime editing in cereal and non-cereal crops. Archives of Agriculture and Environmental Science, 10(4), 702–711. https://doi.org/10.26832/24566632.2025.1004020

Issue

Section

Review Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.