Techno-economic analysis of clean cooking technologies and fuels in Uganda
DOI:
https://doi.org/10.26832/24566632.2025.1002017Keywords:
Alternative energy, Biomass fuels, Clean cooking, Cost-benefit analysis, Energy access, Sustainable developmentAbstract
Access to clean, affordable, and efficient cooking energy is a key development challenge in Uganda, with over 90% of households and institutions relying on traditional biomass fuels. This study was focused on techno-economic assessment of cooking technologies and fuels through Controlled Cooking Tests (CCTs), surveys, and interviews across household and institutional settings to evaluate fuel consumption, cooking time, cost, and user preferences across wood, charcoal, briquettes, LPG, and electric stoves. The results showed that electric hot plates and LPG stoves were the most energy-efficient, consuming 10.42 MJ and 13.28 MJ, respectively, cooking of 1 kg of beans compared to 38.81 MJ for improved wood stoves and 102.44 MJ for traditional three-stone fires. Cooking time, the improved institutional wood stove was the fastest (129 min), followed by LPG (151 min), traditional stoves (153 min), and electric hot plates (174 min). Fuel cost per kg of beans cooked was highest for LPG (Ugx 5,506) and electricity (Ugx 4,393), while improved briquette stoves were the cheapest (Ugx 302), though their adoption remains limited due to availability issues. Improved biomass stoves demonstrated up to 62% energy savings compared to traditional devices, offering a cost-effective and scalable transition option. This study provides the first comprehensive performance comparison across multiple fuel-stove combinations in Uganda and highlights critical trade-offs between energy efficiency, cost, and accessibility. Strategic policy actions including targeted subsidies, investment in clean fuel supply chains, and behaviour change campaigns are recommended to accelerate adoption and support Uganda’s energy, climate, and development goals.
Downloads
References
Abd-Elfaraga, G. O. E., & Langoyab, C. O. C. (2016). Household air pollution and childhood pneumonia in South Sudan: will clean cooking stoves reduce the incidence and mortality? South Sudan Medical Journal, 9(2), 36-39. https://www.ajol.info/index.php/ssmj/article/view/137172
Acheampong, A. O., & Opoku, E. E. O. (2023). Energy justice, democracy and deforestation. Journal of Environmental Management, 118012. https://doi.org/10.1016/j.jenvman.2023.118012
Adane, M. M., Alene, G. D., Mereta, S. T., & Wanyonyi, K. L. (2020). Facilitators and barriers to improved cookstove adoption: a community-based cross-sectional study in Northwest Ethiopia. Environmental Health and Preventive Medicine, 25, 14. https://doi.org/10.1186/s12199-020-00851-y
Adhikari, S., Mahapatra, P. S., Pokheral, C. P., & Puppala, S. P. (2020). Cookstove smoke impact on ambient air quality and probable consequences for human health in rural locations of southern Nepal. International Journal of Environmental Research and Public Health, 17(2), 550. https://doi.org/10.3390/ijerph17020550
Afrane, S., Ampah, J. D., & Mensah, E. A. (2022). Visualization and analysis of mapping knowledge domains for the global transition towards clean cooking: a bibliometric review of research output from 1990 to 2020. Environmental Science and Pollution Research International, 29(16), 23041-23068. https://doi.org/10.1007/s11356-021-17340-6
Aguado Loi, C. X., Alfonso, M. L., Chan, I., Anderson, K., Tyson, D. (Dina) M., Gonzales, J., & Corvin, J. (2017). Application of mixed-methods design in community-engaged research: Lessons learned from an evidence-based intervention for Latinos with chronic illness and minor depression. Evaluation and Program Planning, 63, 29-38. https://doi.org/10.1016/j.evalprogplan.2016.12.010
Ahiekpor, J. C. (2014). Cookstove Sector of Ghana: A baseline study and survey of stakeholders. Centre for Energy, Environment, and Sustainable Development. http://energycom.gov.gh/rett/files/Cookstove-Sector-of-Ghana-Baseline-Study.pdf
Ajimotokan, H. A., Ehindero, A. O., Ajao, K. S., Adeleke, A. A., Ikubanni, P. P., & Shuaib-Babata, Y. L. (2019). Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates. Scientific African. e00202. https://doi.org/10.1016/j.sciaf.2019.e00202
Akhter, S. (2022). Key Informants’ Interviews. In Principles of Social Research Methodology. https://doi.org/10.1007/978-981-19-5441-2_27
Akter, S., & Pratap, C. (2022). Impact of clean cooking fuel adoption on women’s welfare in India: the mediating role of women’s autonomy. Sustainability Science, 17, 243–257. https://doi.org/10.1007/s11625-021-01069-9
Anenberg, S. C., Henze, D. K., Lacey, F., Irfan, A., Kinney, P., Kleiman, G., & Pillarisetti, A. (2017). Air pollution-related health and climate benefits of clean cookstove programs in Mozambique. Environmental Research Letters, 12, 025006. https://doi.org/10.1088/1748-9326/aa5557
Anozie, A. N., Bakare, A. R., Sonibare, J. A., & Oyebisi, T. O. (2007). Evaluation of cooking energy cost, efficiency, impact on air pollution and policy in Nigeria. Energy, 32(7), 1283-1290. https://doi.org/10.1016/j.energy.2006.07.004
Arachchige, U. S. P. R. (2021). Briquettes Production as an Alternative Fuel. Nature Environment and Pollution Technology, 20(4), 1661-1668. https://doi.org/10.46488/NEPT.2021.v20i04.029
Arora, P., Jain, S., & Sachdeva, K. (2014). Laboratory based assessment of cookstove performance using energy and emission parameters for North Indian cooking cycle. Biomass and Bioenergy, 69, 211-221. https://doi.org/10.1016/j.biombioe.2014.07.012
Astbury, C. C., Penney, T. L., & Adams, J. (2019). Comparison of individuals with low versus high consumption of home-prepared food in a group with universally high dietary quality: A cross-sectional analysis of the UK National Diet & Nutrition Survey (2008-2016). International Journal of Behavioral Nutrition and Physical Activity, 16(1),9. https://doi.org/10.1186/s12966-019-0768-7
Bailis, R., Mutisya, I., Hounsell, S., & McLean, K. (2021). Low-cost interventions to reduce emissions and fuel consumption in open wood fires in rural communities: Evidence from field surveys. Energy for Sustainable Development, 63, 145-152. https://doi.org/10.1016/j.esd.2021.06.005
Bekkouche, S. M. E. A., Djeffal, R., Cherier, M. K., Hamdani, M., Younsi, Z., Al-Saadi, S., & Zaiani, M. (2023). Experimental Performance and Cost-Effectiveness of a Combined Heating System under Saharan Climate. Buildings, 13(3), 635. https://doi.org/10.3390/buildings13030635
Chagunda, M. F., Kamunda, C., Mlatho, J., Mikeka, C., & Palamuleni, L. (2017). Performance assessment of an improved cook stove (Esperanza) in a typical domestic setting: implications for energy saving. Energy, Sustainability and Society, 7, 19. https://doi.org/10.1186/s13705-017-0124-1
de Sousa Venega, R., da Silva, R. C., Sousa, T. O., Saraiva, K. F., Colares, C. J. G., Loiola, P. L., da Silva, D. A., & Marchesan, R. (2023). Energy Quality of Wood and Charcoal from the Stem and Root of Eucalyptus spp. Floresta e Ambiente, 30,1. https://doi.org/10.1590/2179-8087-FLORAM-2022-0031
Doyle, S. (2024). QHFSS DNA laboratory – ISO/IEC 17025 conformance and accreditation. In Forensic Science International: Synergy, 3(8),100449. https://doi.org/10.1016/j.fsisyn.2023.100449
Eze, V. H. U. (2024). Advancing Sustainable Energy Solutions in Uganda: A Comprehensive Exploration for Multi-Source Power Control Design. IAA Journal of Applied Sciences, 11(1), 73-86. https://doi.org/10.59298/iaajas/2024/6.68.41.47
Gebreegziabher, Z., Beyene, A. D., Bluffstone, R., Martinsson, P., Mekonnen, A., & Toman, M. A. (2018). Fuel savings, cooking time and user satisfaction with improved biomass cookstoves: Evidence from controlled cooking tests in Ethiopia. Resource and Energy Economics, 52, 173-185. https://doi.org/10.1016/j.reseneeco.2018.01.006
Hou, B., Wu, J., Mi, Z., Ma, C., Shi, X., & Liao, H. (2022). Cooking fuel types and the health effects: A field study in China. Energy Policy, 167, 113012. https://doi.org/10.1016/j.enpol.2022.113012
Kaoma, M., & Gheewala, S. H. (2021). Techno-economic assessment of bioenergy options using crop and forest residues for non-electrified rural growth centres in Zambia. Biomass and Bioenergy, 145, 105944. https://doi.org/10.1016/j.biombioe.2020.105944
Kaur, R., & Pandey, P. (2021). Air Pollution, Climate Change, and Human Health in Indian Cities: A Brief Review. Frontier in Sustainable Cities, 3, 705131. https://doi.org/10.3389/frsc.2021.705131
KC, B., Mahapatra, P. S., Thakker, D., Henry, A. P., Billington, C. K., Sayers, I., Puppala, S. P., & Hall, I. P. (2020). Proinflammatory Effects in Ex Vivo Human Lung Tissue of Respirable Smoke Extracts from Indoor Cooking in Nepal. Annals of the American Thoracic Society, 17(6), 688-698. https://doi.org/10.1513/AnnalsATS.201911-827OC
Khavari, B., Ramirez, C., Jeuland, M., & Fuso Nerini, F. (2023). A geospatial approach to understanding clean cooking challenges in sub-Saharan Africa. Nature Sustainability, 6, 447–457. https://doi.org/10.1038/s41893-022-01039-8
Kim, T., & Boehman, A. L. (2021). Life-Cycle Greenhouse Gas Emissions Assessment of Novel Dimethyl Ether-Glycerol Blends for Compression-Ignition Engine Application. ACS Sustainable Chemistry and Engineering, 9(39). https://doi.org/10.1021/acssuschemeng.1c03783
Kumar, P., & Igdalsky, L. (2019). Sustained uptake of clean cooking practices in poor communities: Role of social networks. Energy Research and Social Science, 48, 189-193. https://doi.org/10.1016/j.erss.2018.10.008
Leary, J., Menyeh, B., Chapungu, V., & Troncoso, K. (2021). Ecooking: Challenges and opportunities from a consumer behaviour perspective. Energies, 4(14), 4345. https://doi.org/10.3390/en14144345
Li, H., Ai, X., Wang, L., & Zhang, R. (2022). Substitution strategies for cooking energy: To use gas or electricity? Journal of Environmental Management, 303, 114135. https://doi.org/10.1016/j.jenvman.2021.114135
Mainimo, E. N., Okello, D. M., Mambo, W., & Mugonola, B. (2022). Drivers of household demand for cooking energy: A case of Central Uganda. Heliyon, 8(3), e09118. https://doi.org/10.1016/j.heliyon.2022.e09118
Manaye, A., Amaha, S., Gufi, Y., Tesfamariam, B., Worku, A., & Abrha, H. (2022). Fuelwood use and carbon emission reduction of improved biomass cookstoves: evidence from kitchen performance tests in Tigray, Ethiopia. Energy, Sustainability and Society, 12, 28. https://doi.org/10.1186/s13705-022-00355-3
Masuda, H., Okitasari, M., Morita, K., Katramiz, T., Shimizu, H., Kawakubo, S., & Kataoka, Y. (2021). SDGs mainstreaming at the local level: case studies from Japan. Sustainability Science, 16, 1539–1562. https://doi.org/10.1007/s11625-021-00977-0
MEMD. (2015). Government of Uganda Ministry of Energy and Mineral Development: Uganda’s Sustainable Energy For All (SE4All) Initiative Action Agenda. In Uganda’s Sustainable Energy for All Initiative - Action Agenda. https://www.seforall.org/sites/default/files/Uganda_AA_EN_Released.pdf
Mlowa, T. K., Chitawo, M. L., & Kasulo, V. (2024). Policy Analysis on Clean Cooking in Malawi: Case of Improved Cookstoves. E3S Web of Conferences, 487, 02003. https://doi.org/10.1051/e3sconf/202448702003
Mwamlima, P., Chacha, N., Mwitalemi, S., Kasian, J., & Prosperous, F. (2023). Efficiency of place-based innovated briquettes making technologies for sustainable cooking energy in Tanzania. East African Journal of Science, Technology and Innovation, 4(3). https://doi.org/10.37425/eajsti.v4i3.710
Njoku, H. O., Agbo, I. N., Agwuna, I. P., Egeonu, D. I., Asuquo, F. U., & Arji, E. I. (2019). Thermal performance improvement of kerosene cook-stoves by heat reuse and radiant heat shielding. Journal of Thermal Analysis and Calorimetry, 136(4), 1847-1860. https://doi.org/10.1007/s10973-018-7792-8
Nsamba, H. K., Ssali, R., Ssali, S. N., Matovu, F., Wasswa, J., & Balimunsi, H. K. (2021). Evaluation of the Cooking Cultures and Practices in Rural Uganda. Journal of Sustainable Bioenergy Systems, 11, 33-44. https://doi.org/10.4236/jsbs.2021.111003
Obi, O. F., Pecenka, R., & Clifford, M. J. (2022). A Review of Biomass Briquette Binders and Quality Parameters. Energies, 15(7), 2426. https://doi.org/10.3390/en15072426
Ochieng, C. A., Tonne, C., & Vardoulakis, S. (2013). A comparison of fuel use between a low cost, improved wood stove and traditional three-stone stove in rural Kenya. Biomass and Bioenergy, 58, 258-266. https://doi.org/10.1016/j.biombioe.2013.07.017
Osano, A., Maghanga, J., Munyeza, C. F., Chaka, B., Olal, W., & Forbes, P. B. C. (2020). Insights into household fuel use in Kenyan communities. Sustainable Cities and Society, 55, 102039. https://doi.org/10.1016/j.scs.2020.102039
Ossei-Bremang, R. N., Akyereko Adjei, E., & Kemausuor, F. (2023). A novel framework for the simultaneous assessment and uptake of clean cooking technologies by food processing enterprises. Cleaner and Responsible Consumption, 11, 100141. https://doi.org/10.1016/j.clrc.2023.100141
Oteu, O. J., Nkambwe, S.-K., Kasima, J. S., Mpewo, M., & Agunyo, M. F. (2024). Evaluation of Agricultural Waste-Based Briquettes as an Alternative Biomass Fuel for Cooking in Uganda. African Journal of Climate Change and Resource Sustainability, 3(1), 49-62. https://doi.org/10.37284/ajccrs.3.1.1763
Owusu-Amankwah, G., Abubakari, S. W., Apraku, E. A., Iddrisu, S., Kar, A., Malagutti, F., Daouda, M., Tawiah, T., Awuni, S., Nuhu, A. R., Peprah, P. T., Jack, B. K., Asante, K. P., & Jack, D. (2023). Socioeconomic determinants of household stove use and stove stacking patterns in Ghana. Energy for Sustainable Development, 76, 101256. https://doi.org/10.1016/j.esd.2023.101256
Ray, I., & Smith, K. R. (2021). Towards safe drinking water and clean cooking for all. The Lancet Global Health, 9(3), e361-e365. https://doi.org/10.1016/S2214-109X(20)30476-9
Rose, H. R., & Morawicki, R. O. (2023). Comparison of the energy consumption of five tabletop electric cooking appliances. Energy Efficiency, 16, 101. https://doi.org/10.1007/s12053-023-10181-x
Rosenthal, J., Quinn, A., Grieshop, A. P., Pillarisetti, A., & Glass, R. I. (2018). Clean cooking and the SDGs: Integrated analytical approaches to guide energy interventions for health and environment goals. Energy for Sustainable Development, 42,152-159. https://doi.org/10.1016/j.esd.2017.11.003
Samal, C., Nayak, S. K., & Mishra, P. C. (2022). Performance evaluation of improved cookstove during combustion of waste biomass feedstocks for developing countries. International Journal of Energy for a Clean Environment, 23(8), 113-127. https://doi.org/10.1615/InterJEnerCleanEnv.2022039062
Sarpong, K. A., Xu, W., Gyamfi, B. A., & Ofori, E. K. (2023). Can environmental taxes and green-energy offer carbon-free E7 economies? An empirical analysis in the framework of COP-26. Environmental Science and Pollution Research, 30, 51726–51739. https://doi.org/10.1007/s11356-023-25904-x
Schöne, N., Dumitrescu, R., & Heinz, B. (2023). Techno-Economic Evaluation of Hydrogen-Based Cooking Solutions in Remote African Communities—The Case of Kenya. Energies, 16(7), 3242. https://doi.org/10.3390/en16073242
Skreiberg, O., Seljeskog, M., & Kausch, F. (2023). Energy Efficiency Increase by Improved Operation and Control in Wood Stoves. Chemical Engineering Transactions, 99, 55-60. https://doi.org/10.3303/CET2399010
Stata Corp. (2019). Stata Statistical Software: Release 16. StataCorp LLC. https://www.scirp.org/reference/referencespapers?referenceid=2757660
Tesfay, A. H., Tsegay, K., Kahsay, M. B., Hailu, M. H., & Adaramola, M. S. (2024). Performance comparison of three prototype biomass stoves with traditional and Mirt stoves for baking Injera. Energy, Sustainability and Society, 14, 11. https://doi.org/10.1186/s13705-024-00443-6
Uganda Vision. (2007). Uganda Vision 2040. Annual Meeting of the Midwest Political Science https://www.greenpolicyplatform.org/sites/default/files/downloads/policy-database/UGANDA)%20Vision%202040.pdf
Wafula, E. M., Kinyanjui, M. M., Nyabola, L., & Tenambergen, E. D. (2000). Effect of improved stoves on prevalence of acute respiration infection and conjunctivitis among children and women in a rural community in Kenya. East African Medical Journal, 77(1), 37-41. https://doi.org/10.4314/eamj.v77i1.46379
Woolley, K. E., Bartington, S. E., Pope, F. D., Greenfield, S. M., Jowett, S., Muhizi, A., Mugabe, C., Ahishakiye, O., Thomas, G. N., & Kabera, T. (2022). Domestic fuel affordability and accessibility in urban Rwanda; policy lessons in a time of crisis? Energy for Sustainable Development, 71, 368-377. https://doi.org/10.1016/j.esd.2022.10.008
Yunusa, S. U., Mensah, E., Preko, K., Narra, S., Saleh, A., Sanfo, S., Isiaka, M., Dalha, I. B., & Abdulsalam, M. (2023). Biomass cookstoves: A review of technical aspects and recent advances. Energy Nexus, 11, 100225. https://doi.org/10.1016/j.nexus.2023.100225
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agriculture and Environmental Science Academy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
